Do you want to publish a course? Click here

A Resolved Millimeter Emission Belt in the AU Mic Debris Disk

122   0   0.0 ( 0 )
 Added by David J. Wilner
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.



rate research

Read More

We have used the Submillimeter Array (SMA) to make 1.3 millimeter observations of the debris disk surrounding HD 15115, an F-type star with a putative membership in the beta Pictoris moving group. This nearly edge-on debris disk shows an extreme asymmetry in optical scattered light, with an extent almost two times larger to the west of the star than to the east (originally dubbed the Blue Needle). The SMA observations reveal resolved emission that we model as a circumstellar belt of thermal dust emission. This belt extends to a radius of ~110 AU, coincident with the break in the scattered light profile convincingly seen on the western side of the disk. This outer edge location is consistent with the presence of an underlying population of dust-producing planetesimals undergoing a collisional cascade, as hypothesized in birth ring theory. In addition, the millimeter emission shows a ~3 sigma feature aligned with the asymmetric western extension of the scattered light disk. If this millimeter extension is real, then mechanisms for asymmetry that affect only small grains, such as interactions with interstellar gas, are disfavored. This tentative feature might be explained by secular perturbations to grain orbits introduced by neutral gas drag, as previously invoked to explain asymmetric morphologies of other, similar debris disks.
We present 1.3 millimeter ALMA Cycle 0 observations of the edge-on debris disk around the nearby, ~10 Myr-old, M-type star AU Mic. These observations obtain 0.6 arcsec (6 AU) resolution and reveal two distinct emission components: (1) the previously known dust belt that extends to a radius of 40 AU, and (2) a newly recognized central peak that remains unresolved. The cold dust belt of mass about 1 lunar mass is resolved in the radial direction with a rising emission profile that peaks sharply at the location of the outer edge of the birth ring of planetesimals hypothesized to explain the midplane scattered light gradients. No significant asymmetries are discerned in the structure or position of this dust belt. The central peak identified in the ALMA image is ~6 times brighter than the stellar photosphere, which indicates an additional emission process in the inner regions of the system. Emission from a stellar corona or activity may contribute, but the observations show no signs of temporal variations characteristic of radio-wave flares. We suggest that this central component may be dominated by dust emission from an inner planetesimal belt of mass about 0.01 lunar mass, consistent with a lack of emission shortward of 25 microns and a location <3 AU from the star. Future millimeter observations can test this assertion, as an inner dust belt should be readily separated from the central star at higher angular resolution.
We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500 and 850 micron. The disk is resolved at 70, 160 and 450 micron. In addition to the planetesimal belt, we detect thermal emission from AU Mics halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is $3.9 times 10^{-4}$ and its mm-grain dust mass is 0.01 MEarth (+/- 20%). We create a simple spatial model that reconciles the disk SED as a blackbody of 53 +/- 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best fit model is consistent with the birth ring model explored in earlier works, i.e., an edge-on dust belt extending from 8.8-40 AU, but with an additional halo component with an $r^{-1.5}$ surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass loss rates of 10-100x solar, compact (zero porosity) grains can only be removed if they are very small, consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 micron can be removed via corpuscular forces (i.e., the stellar wind).
We present new high fidelity optical coronagraphic imagery of the inner $sim$50 au of AU Mics edge-on debris disk using the BAR5 occulter of the Hubble Space Telescope Imaging Spectrograph (HST/STIS) obtained on 26-27 July 2018. This new imagery reveals that feature A, residing at a projected stellocentric separation of 14.2 au on SE-side of the disk, exhibits an apparent loop-like morphology at the time of our observations. The loop has a projected width of 1.5 au and rises 2.3 au above the disk midplane. We also explored TESS photometric observations of AU Mic that are consistent with evidence of two starspot complexes in the system. The likely co-alignment of the stellar and disk rotational axes breaks degeneracies in detailed spot modeling, indicating that AU Mics projected magnetic field axis is offset from its rotational axis. We speculate that small grains in AU Mics disk could be sculpted by a time-dependent wind that is influenced by this offset magnetic field axis, analogous to co-rotating Solar interaction regions that sculpt and influence the inner and outer regions of our own Heliosphere. Alternatively, if the observed spot modulation is indicative of a significant mis-alignment of the stellar and disk rotational axes, we suggest the disk could still be sculpted by the differential equatorial versus polar wind that it sees with every stellar rotation.
The vertical distribution of dust in debris disks is sensitive to the number and size of large planetesimals dynamically stirring the disk, and is therefore well-suited for constraining the prevalence of otherwise unobservable Uranus and Neptune analogs. Information regarding stirring bodies has previously been inferred from infrared and optical observations of debris disk vertical structure, but theoretical works predict that the small particles traced by short-wavelength observations will be `puffed up by radiation pressure, yielding only upper limits. The large grains that dominate the disk emission at millimeter wavelengths are much less sensitive to the effects of stellar radiation or stellar winds, and therefore trace the underlying mass distribution more directly. Here we present ALMA 1.3 mm dust continuum observations of the debris disk around the nearby M star AU Mic. The 3 au spatial resolution of the observations, combined with the favorable edge-on geometry of the system, allows us to measure the vertical thickness of the disk. We report a scale height-to-radius aspect ratio of $h = 0.031_{-0.004}^{+0.005}$ between radii of $sim 23$ au and $sim 41$ au. Comparing this aspect ratio to a theoretical model of size-dependent velocity distributions in the collisional cascade, we find that the perturbing bodies embedded in the local disk must be larger than about 400 km, and the largest perturbing body must be smaller than roughly 1.8 M$_odot$. These measurements rule out the presence of a gas giant or Neptune analog near the $sim 40$ au outer edge of the debris ring, but are suggestive of large planetesimals or an Earth-sized planet stirring the dust distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا