Do you want to publish a course? Click here

K-essence and kinetic gravity braiding models in two-field measure theory

79   0   0.0 ( 0 )
 Added by Ruben Cordero
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that, in the context of the two-field measure theory, any k-essence model leads to the existence of a fluid made of non-relativistic matter and cosmological constant that would explain the dark matter and dark energy problem at the same time. On the other hand, kinetic gravity braiding models can lead to different behaviors, such as phantom dark energy, stiff matter, and a cosmological constant. For stiff matter, there even exists the case where the scalar field does not have any effect in the dynamics of the Universe.

rate research

Read More

We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole horizon) and a sound horizon that traps k-essence. In certain cases the k-essence signals can travel faster than light and the sound horizon is inside the light horizon. Under those circumstances, k-essence signals can escape from the black hole. Eventually, the two horizons merge and the k-essence signals can no longer escape.
We consider modifications of general relativity characterized by a special noncovariant constraint on metric coefficients, which effectively generates a perfect-fluid type of matter stress tensor in Einstein equations. Such class of modified gravity models includes recently suggested generalized unimodular gravity (GUMG) theory and its simplest version -- unimodular gravity (UMG). We make these gravity models covariant by introducing four Stueckelberg fields and show that in the case of generalized unimodular gravity three out of these fields dynamically decouple. This means that the covariant form of generalized unimodular gravity is dynamically equivalent to k-essence theory with a specific Lagrangian which can be reconstructed from the parameters of GUMG theory. We provide the examples, where such reconstruction can be done explicitly, and briefly discuss theories beyond GUMG, related to self-gravitating media models. Also we compare GUMG k-inflation with cuscuton models of dynamically inert k-essence field and discuss motivation for GUMG coming from effective field theory.
We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are defined by acting a two-mode squeezed operator which is characterized by squeezing parameters $r_k$ and $phi_k$ on vacuum state. The evolution of these squeezing parameters are governed by the $Schrddot{o}dinger$ equation, in which the Hamiltonian operator is derived from the cosmological perturbative action. With aid of the solutions of $r_k$ and $phi_k$, one can calculate the quantum circuit complexity between unsqueezed vacuum state and squeezed quantum states via the wave-function approach. One advantage of K-essence is that it allows us to explore the effects of varied sound speeds on evolution of cosmological complexity. Besides, this model also provides a way for us to distinguish the different cosmological phases by extracting some basic informations, like the scrambling time and Lyapunov exponent etc, from the evolution of cosmological complexity.
We study a deSitter/Anti-deSitter/Poincare Yang-Mills theory of gravity in d-space-time dimensions in an attempt to retain the best features of both general relativity and Yang-Mills theory: quadratic curvature, dimensionless coupling and background independence. We derive the equations of motion for Lie algebra valued scalars and show that in the geometric optics limit they traverse geodesics with respect to the Lorentzian geometry determined by the frame fields. Mixing between components appears to next to leading order in the WKB approximation. We then restrict to two space-time dimensions for simplicity, in which case the theory reduces to the well known Katanaev-Volovich model. We complete the Hamiltonian analysis of the vacuum theory and use it to prove a generalized Birkhoff theorem. There are two classes of solutions: with torsion and without torsion. The former are parametrized by two constants of motion, have event horizons for certain ranges of the parameters and a curvature singularity. The latter yield a unique solution, up to diffeomorphisms, that describes a space constant curvature .
101 - Frank Gronwald 1997
We give a self-contained introduction into the metric-affine gauge theory of gravity. Starting from the equivalence of reference frames, the prototype of a gauge theory is presented and illustrated by the example of Yang-Mills theory. Along the same lines we perform a gauging of the affine group and establish the geometry of metric-affine gravity. The results are put into the dynamical framework of a classical field theory. We derive subcases of metric-affine gravity by restricting the affine group to some of its subgroups. The important subcase of general relativity as a gauge theory of translations is explained in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا