Do you want to publish a course? Click here

Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles

94   0   0.0 ( 0 )
 Added by Ivan Maksymov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Irradiation with UV-C band ultraviolet light is one of the most commonly used ways of disinfecting water contaminated by pathogens such as bacteria and viruses. Sonoluminescence, the emission of light from acoustically-induced collapse of air bubbles in water, is an efficient means of generating UV-C light. However, because a spherical bubble collapsing in the bulk of water creates isotropic radiation, the generated UV-C light fluence is insufficient for disinfection. Here, we show that we can create a UV light beam from aspherical air bubble collapse near a gallium-based liquid-metal microparticle. The beam is perpendicular to the metal surface and is caused by the interaction of sonoluminescence light with UV plasmon modes of the metal. We calculate that such beams can generate fluences exceeding $10$ mJ/cm$^2$, which is sufficient to irreversibly inactivate most common pathogens in water with the turbidity of more than $5$ Nephelometric Turbidity Units.



rate research

Read More

Nanoparticles made of non-noble metals such as gallium have recently attracted significant attention due to promising applications in UV plasmonics. To date, experiments have mostly focused on solid and liquid pure gallium particles immobilized on solid substrates. However, for many applications, colloidal liquid-metal nanoparticle solutions are vital. Here, we experimentally demonstrate strong UV plasmonic resonances of eutectic gallium-indium (EGaIn) liquid-metal alloy nanoparticles suspended in ethanol. We rationalise experimental results through a theoretical model based on Mie theory. Our results contribute to the understanding of UV plasmon resonances in colloidal liquid-metal EGaIn nanoparticle suspensions. They will also enable further research into emerging applications of UV plasmonics in biomedical imaging, sensing, stretchable electronics, photoacoustics, and electrochemistry.
Single bubble sonoluminescence is understood in terms of a shock focusing towards the bubble center. We present a mechanism for significantly enhancing the effect of shock focusing, arising from the storage of energy in the acoustic modes of the gas. The modes with strongest coupling are not spherically symmetric. The storage of acoustic energy gives a framework for understanding how light intensities depend so strongly on ambient gases and liquids and suggests that the light intensities of successive flashes are highly correlated.
Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which in general lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies of proteins, to undercover their role in cell stress. We find that proteins inside aggresomes are mobile and undergo dynamic turnover, consistent with a liquid state. Our observations are in quantitative agreement with phase-separated liquid droplet formation driven by interacting proteins under thermal equilibrium that nucleate following diffusive collisions in the cytoplasm. We have discovered aggresomes in multiple species of bacteria, and show that these emergent, metastable liquid-structured protein assemblies increase bacterial fitness by enabling cells to tolerate environmental stresses.
We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile particles (precipitate) and bouncing particles (gas) coupled to the Navier-Stokes equation for the liquid. This theory successfully reproduces correct topology of the phase diagram and primary patterns observed in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]: static crystals and honeycombs and dynamic pulsating rings and rotating multi-petal vortices.
We present a method for a complete characterization of a femtosecond ultraviolet pulse when a fundamental near-infrared beam is also available. Our approach relies on generation of second harmonic from the pre-characterized fundamental, which serves as a reference against which an unknown pulse is measured using spectral interference (SI). The characterization apparatus is a modified second harmonic frequency resolved optical gating setup which additionally allows for taking SI spectrum. The presented method is linear in the unknown field, simple and sensitive. We checked its accuracy using test pulses generated in a thick nonlinear crystal, demonstrating the ability to measure the phase in a broad spectral range, down to 0.1% peak spectral intensity as well as retrieving pi leaps in the spectral phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا