Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This response time decreases for thinner metal films. The macroscopic response time depends on the mean and the variance of the distribution of microscopic momentum relaxation times of the conducting electrons. Comparing the recorded response times with DC-conductivities demonstrates increasing variance of the microscopic relaxation times with increasing film thickness. At least two electron species contribute to conduction in bulk with substantially differing relaxation times. The different electron species are affected differently by the confinement because they have different mean free paths.
Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for the thinnest films. The macroscopic response time is not strictly proportional to the conductivity. This excludes the existence of a single relaxation time universal for all conduction electrons. We must assume a distribution of microscopic momentum relaxation times. The macroscopic response time depends on average and variation of this distribution; the observed deviation between response time and conductivity scaling corresponds to the scaling of the variation. The variation of microscopic relaxation times depends on film thickness because electrons with different relaxation times are affected differently by the confinement since they have different mean free paths.
Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO$_{3}$, are particularly promising due to the favorable energy alignment of the valence and conduction bands comprised of Fe$^{3+}$ cations and the visible light band gap of such materials. In this work, we examine the role of band alignment on the electrocatalytic oxygen evolution reaction (OER) in the intrinsic semiconductor LaFeO$_{3}$ by growing epitaxial films of varying thicknesses on Nb-doped SrTiO$_{3}$. Using cyclic voltammetry and electrochemical impedance spectroscopy, we find that there is a strong thickness dependence on the efficiency of electrocatalysis for OER. These measurements are understood based on interfacial band alignment in the system as confirmed by layer-resolved electron energy loss spectroscopy and electrochemical Mott-Schottky measurements. Our results demonstrate the importance of band engineering for the rational design of thin film electrocatalysts for renewable energy sources.
The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.
A central theme in condensed matter physics is to create and understand the exotic states of matter by incorporating magnetism into topological materials. One prime example is the quantum anomalous Hall (QAH) state. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the QAH effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a non-square hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. Through careful analysis, we demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, while the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase in the samples. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior, a signature of antiferromagnetic thin films. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films, in which the QAH and other exotic states are predicted.
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required, such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.