Do you want to publish a course? Click here

The low-temperature phase in the two-dimensional long-range diluted XY model

235   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The critical behaviour of statistical models with long-range interactions exhibits distinct regimes as a function of $rho$, the power of the interaction strength decay. For $rho$ large enough, $rho>rho_{rm sr}$, the critical behaviour is observed to coincide with that of the short-range model. However, there are controversial aspects regarding this picture, one of which is the value of the short-range threshold $rho_{rm sr}$ in the case of the long-range XY model in two dimensions. We study the 2d XY model on the {it diluted} graph, a sparse graph obtained from the 2d lattice by rewiring links with probability decaying with the Euclidean distance of the lattice as $|r|^{-rho}$, which is expected to feature the same critical behavior of the long range model. Through Monte Carlo sampling and finite-size analysis of the spontaneous magnetisation and of the Binder cumulant, we present numerical evidence that $rho_{rm sr}=4$. According to such a result, one expects the model to belong to the Berezinskii-Kosterlitz-Thouless (BKT) universality class for $rhoge 4$, and to present a $2^{nd}$-order transition for $rho<4$.



rate research

Read More

We investigate the nonequilibrium dynamics following a quench to zero temperature of the non-conserved Ising model with power-law decaying long-range interactions $propto 1/r^{d+sigma}$ in $d=2$ spatial dimensions. The zero-temperature coarsening is always of special interest among nonequilibrium processes, because often peculiar behavior is observed. We provide estimates of the nonequilibrium exponents, viz., the growth exponent $alpha$, the persistence exponent $theta$, and the fractal dimension $d_f$. It is found that the growth exponent $alphaapprox 3/4$ is independent of $sigma$ and different from $alpha=1/2$ as expected for nearest-neighbor models. In the large $sigma$ regime of the tunable interactions only the fractal dimension $d_f$ of the nearest-neighbor Ising model is recovered, while the other exponents differ significantly. For the persistence exponent $theta$ this is a direct consequence of the different growth exponents $alpha$ as can be understood from the relation $d-d_f=theta/alpha$; they just differ by the ratio of the growth exponents $approx 3/2$. This relation has been proposed for annihilation processes and later numerically tested for the $d=2$ nearest-neighbor Ising model. We confirm this relation for all $sigma$ studied, reinforcing its general validity.
We present a detailed investigation of the probability density function (PDF) of order parameter fluctuations in the finite two-dimensional XY (2dXY) model. In the low temperature critical phase of this model, the PDF approaches a universal non-Gaussian limit distribution in the limit T-->0. Our analysis resolves the question of temperature dependence of the PDF in this regime, for which conflicting results have been reported. We show analytically that a weak temperature dependence results from the inclusion of multiple loop graphs in a previously-derived graphical expansion. This is confirmed by numerical simulations on two controlled approximations to the 2dXY model: the Harmonic and ``Harmonic XY models. The Harmonic model has no Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes progressively less skewed with increasing temperature until it closely approximates a Gaussian function above T ~ 4pi. Near to that temperature we find some evidence of a phase transition, although our observations appear to exclude a thermodynamic singularity.
The phase diagram of the quasi-two-dimensional easy-plane antiferromagnetic model, with a magnetic field applied in the easy plane, is studied using the self-consistent harmonic approximation. We found a linear dependence of the transition temperature as a function of the field for large values of the field. Our results are in agreement with experimental data for the spin-1 honeycomb compound BaNi_2V_2O_3
170 - L. A. S. Mol , B. V. Costa 2013
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the kinetic energy and a decrease in the potential energy, with the total energy being conserved. We find that the coarsening dynamics exhibits a consistently superdiffusive growth of a characteristic length scale with 1/z > 1/2 (ranging from 0.54 to 0.57). Also, the number of point defects (vortices and antivortices) decreases with exponents ranging between 1.0 and 1.1. On the other hand, the excess potential energy decays with a typical exponent of 0.88, which shows deviations from the energy-scaling relation. The spin autocorrelation function exhibits a peculiar time dependence with non-power law behavior that can be fitted well by an exponential of logarithmic power in time. We argue that the conservation of the total Josephson (angular) momentum plays a crucial role for these novel features of coarsening in the Hamiltonian XY model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا