No Arabic abstract
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the kinetic energy and a decrease in the potential energy, with the total energy being conserved. We find that the coarsening dynamics exhibits a consistently superdiffusive growth of a characteristic length scale with 1/z > 1/2 (ranging from 0.54 to 0.57). Also, the number of point defects (vortices and antivortices) decreases with exponents ranging between 1.0 and 1.1. On the other hand, the excess potential energy decays with a typical exponent of 0.88, which shows deviations from the energy-scaling relation. The spin autocorrelation function exhibits a peculiar time dependence with non-power law behavior that can be fitted well by an exponential of logarithmic power in time. We argue that the conservation of the total Josephson (angular) momentum plays a crucial role for these novel features of coarsening in the Hamiltonian XY model.
We find a breakdown of the critical dynamic scaling in the coarsening dynamics of an antiferromagnetic {em XY} model on the kagome lattice when the system is quenched from disordered states into the Kosterlitz-Thouless ({em KT}) phases at low temperatures. There exist multiple growing length scales: the length scales of the average separation between fractional vortices are found to be {em not} proportional to the length scales of the quasi-ordered domains. They are instead related through a nontrivial power-law relation. The length scale of the quasi-ordered domains (as determined from optimal collapse of the correlation functions for the order parameter $exp[3 i theta (r)]$) does not follow a simple power law growth but exhibits an anomalous growth with time-dependent effective growth exponent. The breakdown of the critical dynamic scaling is accompanied by unusual relaxation dynamics in the decay of fractional ($3theta$) vortices, where the decay of the vortex numbers is characterized by an exponential function of logarithmic powers in time.
We present a detailed investigation of the probability density function (PDF) of order parameter fluctuations in the finite two-dimensional XY (2dXY) model. In the low temperature critical phase of this model, the PDF approaches a universal non-Gaussian limit distribution in the limit T-->0. Our analysis resolves the question of temperature dependence of the PDF in this regime, for which conflicting results have been reported. We show analytically that a weak temperature dependence results from the inclusion of multiple loop graphs in a previously-derived graphical expansion. This is confirmed by numerical simulations on two controlled approximations to the 2dXY model: the Harmonic and ``Harmonic XY models. The Harmonic model has no Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes progressively less skewed with increasing temperature until it closely approximates a Gaussian function above T ~ 4pi. Near to that temperature we find some evidence of a phase transition, although our observations appear to exclude a thermodynamic singularity.
We investigate the nonequilibrium dynamics following a quench to zero temperature of the non-conserved Ising model with power-law decaying long-range interactions $propto 1/r^{d+sigma}$ in $d=2$ spatial dimensions. The zero-temperature coarsening is always of special interest among nonequilibrium processes, because often peculiar behavior is observed. We provide estimates of the nonequilibrium exponents, viz., the growth exponent $alpha$, the persistence exponent $theta$, and the fractal dimension $d_f$. It is found that the growth exponent $alphaapprox 3/4$ is independent of $sigma$ and different from $alpha=1/2$ as expected for nearest-neighbor models. In the large $sigma$ regime of the tunable interactions only the fractal dimension $d_f$ of the nearest-neighbor Ising model is recovered, while the other exponents differ significantly. For the persistence exponent $theta$ this is a direct consequence of the different growth exponents $alpha$ as can be understood from the relation $d-d_f=theta/alpha$; they just differ by the ratio of the growth exponents $approx 3/2$. This relation has been proposed for annihilation processes and later numerically tested for the $d=2$ nearest-neighbor Ising model. We confirm this relation for all $sigma$ studied, reinforcing its general validity.
We show that for a d-dimensional model in which a quench with a rate tau^{-1} takes the system across a d-m dimensional critical surface, the defect density scales as n sim 1/tau^{m u/(z u +1)}, where u and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d=2 and m= u=z=1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model which can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.
We consider a modification of the well studied Hamiltonian Mean-Field model by introducing a hard-core point-like repulsive interaction and propose a numerical integration scheme to integrate numerically its dynamics. Our results show that the outcome of the initial violent relaxation is altered, and also that the phase-diagram is modified with a critical temperature at a higher value than in the non-collisional counterpart.