Do you want to publish a course? Click here

Low Complexity WMMSE Power Allocation In NOMA-FD Systems

100   0   0.0 ( 0 )
 Added by Fabio Saggese
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper we study the problem of power and channel allocation with the objective of maximizing the system sum-rate for multicarrier non-orthogonal multiple access (NOMA) full duplex (FD) systems. Such an allocation problem is non-convex and, thus, with the goal of designing a low complexity solution, we propose a scheme based on the minimization of the weighted mean square error, which achieves performance reasonably close to the optimum and allows to clearly outperforms a conventional orthogonal multiple access approach. Numerical results assess the effectiveness of our algorithm.



rate research

Read More

In this paper, we study the problem of power and channel allocation for multicarrier non-orthogonal multiple access (NOMA) full duplex (FD) systems. In such a system there are multiple interfering users transmitting over the same channel and the allocation task is a non-convex and extremely challenging problem. The objective of our work is to propose a solution that is close to the theoretic optimum but is of limited complexity. Following a block coordinate descent approach, we propose two algorithms based on the decomposition of the original allocation problem in lower-complexity sub-problems, which can be solved in the Lagrangian dual domain with a great reduction of the computational load. Numerical results show the effectiveness of approach we propose, which outperforms other schemes designed to address NOMA-FD allocation and attains performance similar to the optimal solution with much lower complexity.
We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we depart from classical purely model-based approaches and propose a hybrid method that retains key modeling elements in conjunction with data-driven components. More precisely, we put forth a neural network architecture inspired by the algorithmic unfolding of the iterative weighted minimum mean squared error (WMMSE) method, that we denote by unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph neural networks (GNNs), where the time-varying underlying graphs are given by the fading interference coefficients in the wireless network. These GNNs are trained through a gradient descent approach based on multiple instances of the power allocation problem. We show that the proposed architecture is permutation equivariant, thus facilitating generalizability across network topologies. Comprehensive numerical experiments illustrate the performance attained by UWMMSE along with its robustness to hyper-parameter selection and generalizability to unseen scenarios such as different network densities and network sizes.
An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve). To guarantee the security, the UAV employs a power splitting approach, where its transmit power can be divided into two parts for transmitting confidential messages and artificial noise (AN), respectively. We aim to maximize the average secrecy rate by jointly optimizing the UAVs trajectory, the transmit power levels and the corresponding power splitting ratios allocated to different time slots during the whole flight time, subject to both the maximum UAV speed constraint, the total mobility energy constraint, the total transmit power constraint, and other related constraints. To efficiently tackle this non-convex optimization problem, we propose an iterative algorithm by blending the benefits of the block coordinate descent (BCD) method, the concave-convex procedure (CCCP) and the alternating direction method of multipliers (ADMM). Specially, we show that the proposed algorithm exhibits very low computational complexity and each of its updating steps can be formulated in a nearly closed form. Our simulation results validate the efficiency of the proposed algorithm.
This paper investigates the application of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA). Particularly, we consider downlink transmission with a hybrid beamforming structure. A user grouping algorithm is first proposed according to the channel correlations of the users. Whereafter, a joint hybrid beamforming and power allocation problem is formulated to maximize the achievable sum rate, subject to a minimum rate constraint for each user. To solve this non-convex problem with high-dimensional variables, we first obtain the solution of power allocation under arbitrary fixed hybrid beamforming, which is divided into intra-group power allocation and inter-group power allocation. Then, given arbitrary fixed analog beamforming, we utilize the approximate zero-forcing method to design the digital beamforming to minimize the inter-group interference. Finally, the analog beamforming problem with the constant-modulus constraint is solved with a proposed boundary-compressed particle swarm optimization algorithm. Simulation results show that the proposed joint approach, including user grouping, hybrid beamforming and power allocation, outperforms the state-of-the-art schemes and the conventional mmWave orthogonal multiple access system in terms of achievable sum rate and energy efficiency.
Achieving significant performance gains both in terms of system throughput and massive connectivity, non-orthogonal multiple access (NOMA) has been considered as a very promising candidate for future wireless communications technologies. It has already received serious consideration for implementation in the fifth generation (5G) and beyond wireless communication systems. This is mainly due to NOMA allowing more than one user to utilise one transmission resource simultaneously at the transmitter side and successive interference cancellation (SIC) at the receiver side. However, in order to take advantage of the benefits, NOMA provides in an optimal manner, power allocation needs to be considered to maximise the system throughput. This problem is non-deterministic polynomial-time (NP)-hard which is mainly why the use of deep learning techniques for power allocation is required. In this paper, a state-of-the-art review on cutting-edge solutions to the power allocation optimisation problem using deep learning is provided. It is shown that the use of deep learning techniques to obtain effective solutions to the power allocation problem in NOMA is paramount for the future of NOMA-based wireless communication systems. Furthermore, several possible research directions based on the use of deep learning in NOMA systems are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا