No Arabic abstract
We present an analytical model to study the dynamics of the outer edge of Saturns A ring. The latter is influenced by 7:6 mean motion resonances with Janus and Epimetheus. Because of the horseshoe motion of the two co-orbital moons, the ring edge particles are alternately trapped in a corotation eccentricity resonance (CER) or a Lindblad eccentricity resonance (LER). However, the resonance oscillation periods are longer than the 4-year interval between the switches in the orbits of Janus and Epimetheus. Averaged equations of motion are used, and our model is numerically integrated to describe the effects of the periodic sweeping of the 7:6 CERs and LERs over the ring edge region. We show that four radial zones (ranges 136715-136723, 136738-136749, 136756-136768, 136783-136791 km) are chaotic on decadal timescales, within which particle semi-major axes have periodic changes due to partial libration motions around the CER fixed points. After a few decades, the maximum variation of semi-major axis is about 11 km (respectively 3 km) in the case of the CER with Janus (respectively Epimetheus). Similarly, particle eccentricities have partial oscillations forced by the LERs every 4 yr. For initially circular orbits, the maximum eccentricity reached is ~0.001. We apply our work to Peggy, an object recently discovered at the ring edge, confirming that it is strongly perturbed by the Janus 7:6 LER. The CER has currently no effect on that body, nevertheless the fitted semi-major axes are just outside the chaotic zone of radial range 136756-136768 km.
The $mu$ and $ u$ rings of Uranus form a secondary ring-moon system with the satellites Puck, Mab,Portia, and Rosalind. These rings are tenuous and dominated by micrometric particles, which can be strongly disturbed by the solar radiation pressure. We performed a numerical analysis of the orbital evolution of a sample of particles under the influence of the solar radiation force and the planetary oblateness, combined with the gravitational interaction with the close satellites. The most likely result is a collisions and the deposition of particles onto the surface of these satellites. Since this mechanism tends to cause a depletion of material of the rings, we investigate additional sources for these dust particles. Adopting a rough estimative of the flux of interplanetary meteoroids, we found that the ejections from Mab could generate a ring with optical depth comparable with the observations. A similar analysis was carried out for the F-ring dust band. The damping due to the Saturns oblateness prevents the overstated changes of the eccentricity and increases in the lifetime of the particles. Therewithal photometric study of the F-ring using Cassini images revealed that substantial secular increase in the brightness of Saturns F ring has occurred in the last 25 years. The shapes of the phase curves from Cassini and Voyager are similar, suggesting that although the number of dust particles has increased, the overall distribution of sizes is unchanged. The dust bands that permeate the rings of Uranus were observed late in 2007 during the equinox, when the Sun crossed the ring plane. Images taken with the VLT were processed and then combined to result in long-exposure frames. For each frame, the north and south radial profiles were extracted. They will be used to develop a photometric model.
The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains in the dark, not visible to Cassinis cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particles production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the firefly behavior.
Saturns ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the latter should result in a weak planet-wide glow in infrared (IR), corresponding to the planets uniform illumination by the Sun. The observed low-latitude ionospheric electron density is lower and the temperature higher than predicted by models. A planet-ring magnetic connection has been previously suggested in which an influx of water from the rings could explain the lower than expected electron densities in Saturns atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from ~25 to 60 degrees, that is superposed on the lower latitude background glow, with peaks in emission that map along the planets magnetic field lines to gaps in Saturns rings. This pattern implies the transfer of charged water products from the ring-plane to the ionosphere, revealing the influx on a global scale, flooding between 30 to 43% of the planets upper-atmospheric surface. This ring `rain plays a fundamental role in modulating ionospheric emissions and suppressing electron densities.
Saturns mid-sized moons (satellites) have a puzzling orbital configuration with trapping in mean-motion resonances with every other pairs (Mimas-Tethys 4:2 and Enceladus-Dione 2:1). To reproduce their current orbital configuration on the basis of Crida & Charnozs model of satellite formation from a hypothetical ancient massive rings, adjacent pairs must pass 1st-order mean-motion resonances without being trapped. The trapping could be avoided by fast orbital migration and/or excitation of the satellites eccentricity caused by gravitational interactions between the satellites and the rings (the disk), which are still unknown. In our research, we investigate the satellite orbital evolution due to interactions with the disk through full N-body simulations. We performed global high-resolution N-body simulations of a self-gravitating particle disk interacting with a single satellite. We used $N sim 10^5$ particles for the disk. Gravitational forces of all the particles and their inelastic collisions are taken into account. As a result, dense short-wavelength wake structure is created by the disk self-gravity and global spiral arms with $m sim$ a few is induced by the satellite. The self-gravity wakes regulate the orbital evolution of the satellite, which has been considered as a disk spreading mechanism but not as a driver for the orbital evolution. The self-gravity wake torque to the satellite is so effective that the satellite migration is much faster than that was predicted with the spiral arms torque. It provides a possible model to avoid the resonance capture of adjacent satellite pairs and establish the current orbital configuration of Saturns mid-sized satellites.
In this paper, we introduce a simplified model to understand the location of Saturns F ring. The model is a planar restricted five-body problem defined by the gravitational field of Saturn, including its second zonal harmonic $J_2$, the shepherd moons Prometheus and Pandora, and Titan. We compute accurate long-time numerical integrations of (about 2.5 million) non-interacting test-particles initially located in the region between the orbits of Prometheus and Pandora, and address whether they escape or remain trapped in this region. We obtain a wide region of initial conditions of the test particles that remain confined. We consider a dynamical stability indicator for the test particles motion defined by computing the ratio of the standard deviation over the average value of relevant dynamical quantities, in particular, for the mean-motion and the semi-major axis. This indicator separates clearly a subset of trapped initial conditions that appear as very localized stripes in the initial semi-major axis and eccentricity space for the most stable orbits. Retaining only these test particles, we obtain a narrow eccentric ring which displays sharp edges and collective alignment. The semi-major axis of the accumulation stripes of the stable ring-particles can be associated with resonances, mostly involving Prometheus outer Lindblad and co-rotation resonances, but not exclusively. Pandoras inner Lindblad and co-rotation resonances as well as low-order three-body resonances typically coincide with gaps, i.e., regions of instabilities. Comparison of our results with the nominal data for the F ring shows some correspondence.