Do you want to publish a course? Click here

Novel ideas in nonleptonic decays of double heavy baryons

120   0   0.0 ( 0 )
 Added by Valery Lyubovitskij
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The recent discovery of double charm baryon states by the LHCb Collaborarion and their high precision mass determination calls for a comprehensive analysis of the nonleptonic decays of double and single heavy baryons. Nonleptonic baryon decays play an important role in particle phenomenology since they allow to study the interplay of long and short distance dynamics of the Standard Model (SM). Further, they allow one to search for New Physics effects beyond the SM. We review recent progress in experimental and theoretical studies of the nonleptonic decays of heavy baryons with a focus on double charm baryon states and their decays. In particular, we discuss new ideas proposed by the present authors to calculate the $W$-exchange matrix elements of the nonleptonic decays of double heavy baryons. An important ingredient in our approach is the compositeness condition of Salam and Weinberg, and an effective implementation of infrared confinement both of which allow one to describe the nonperturbative structure of baryons composed of light and heavy quarks. Further we discuss an ab initio calculational method for the treatment of the so-called $W$-exchange diagrams generated by $W^{pm}$ boson exchange between quarks. We found that the $W^{pm}$-exchange contributions are not suppressed in comparison with the tree-level (factrorizing) diagrams and must be taken into account in the evaluation of matrix elements. Moreover, there are decay processes such as the doubly Cabibbo-suppressed decay $Xi_c^+ to p phi$ recently observed by the LHCb Collaboration which is contributed to only by one single $W$-exchange diagram.



rate research

Read More

Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic quark model. We include factorizing as well as nonfactorizing contributions to the decay amplitudes.
We have made an ab initio three-loop quark model calculation of the $W$-exchange contribution to the nonleptonic two-body decays of the doubly charmed baryons $Xi_{cc}^{++}$ and $Omega_{cc}^{+}$. The $W$-exchange contributions appear in addition to the factorizable tree graph contributions and are not suppressed in general. We make use of the covariant confined quark model previously developed by us to calculate the tree graph as well as the $W$-exchange contribution. We calculate helicity amplitudes and quantitatively compare the tree graph and $W$-exchange contributions. Finally, we compare the calculated decay widths with those from other theoretical approaches when they are available.
In this paper we study the properties of diquarks (composed of $u$ and/or $d$ quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit $m_Qtoinfty$, we calculate the decay widths of $Sigma_Q^{(*)}$ ($Q=c,b$) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths $Gamma(Sigma_b^{(*)}toLambda_b+pi)$.
The transition form factors responsible for the radiative $Sigma_Q to Lambda_Q gamma$ and $Xi_Q^prime to Xi gamma$ decays of the negative parity baryons are examined within light cone QCD sum rules. The decay widths of the radiative transitions are calculated using the obtained results of the form factors.
54 - A.G.Rusetsky (JINR , Dubna , IHEP 1997
Bethe-Salpeter approach has been applied to the study of b --> c transitions both for heavy mesons and heavy baryons. Meson and baryon IW functions are calculated on the equal footing. A reasonable agreement with the experimental data for heavy to heavy semileptonic transitions has been obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا