Do you want to publish a course? Click here

Double Magma associated with Ward and double Ward quasigroups

62   0   0.0 ( 0 )
 Added by Robert Monzo
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We describe types of double magma associated with Ward quasigroups, double Ward quasigroups, their duals and the groups they generate. Ward quasigroup double magma and unipotent, right modular, left unital double magma are proved to be improper. Necessary and sufficient conditions are found on a pair of right modular, left unital magma (and right-left unital magma) for them to form a double magma. We give further insight into the intimate connection between mediality and the interchange law by proving that a quasigroup is medial if and only if any pair of its parastrophic binary operations satisfy the interchange law.



rate research

Read More

Ward identities for reggeons are studied in the framework of effective action approach to the QCD in Regge kinematics. It is shown that they require introduction of new contributions not present in the reggeon diagrams initially. Application to vertices RR$to$RP and RR$to$RRP are considered and diagrams which have to be added to the QCD ones are found.
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from lower-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
92 - Peter M. Lavrov 2020
Basic properties of gauge theories in the framework of Faddeev-Popov (FP) method, Batalin-Vilkovisky (BV) formalism, functional renormalization group approach are considered. The FP- and BV- quantizations are characterized by the BRST symmetry while the BRST symmetry is broken in the FRG approach. It is shown that the FP-method, the BV-formalism and the FRG approach can be provided with the Slavnov-Taylor identity, the Ward identity and the modified Slavnov-Taylor identity respectively. It is proved that using the background field method, the background gauge invariance of effective action within the FP and FRG quantization procedures can be achieved in non-linear gauges. The gauge dependence problem within the FP-, BV- and FRG quantizations is studied. Arguments allowing to state impossibility of gauge independence of physical results obtained within the FRG approach are given.
Distributivity in algebraic structures appeared in many contexts such as in quasigroup theory, semigroup theory and algebraic knot theory. In this paper we give a survey of distributivity in quasigroup theory and in quandle theory.
67 - Wieslaw A. Dudek 2016
Parastrophes (conjugates) of a quasigroup can be divided into separate classes containing isotopic parastrophes. We prove that the number of such classes is always 1, 2, 3 or 6. Next we characterize quasigroups having a fixed number of such classes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا