No Arabic abstract
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from lower-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
We initiate a systematic study of the consequences of (super)conformal symmetry of massless scattering amplitudes. The classical symmetry is potentially broken at the quantum level by infrared and ultraviolet effects. We study its manifestations on the finite hard part of the scattering process. The conformal Ward identities in momentum space are second-order differential equations, difficult to analyze. We prefer to study superconformal symmetry whose generators are first-order in the momenta. Working in a massless N=1 supersymmetric Wess-Zumino model, we derive on-shell superconformal Ward identities. They contain an anomaly due to collinear regions of loop momenta. It is given by an integral with one loop less than the original graph, with an extra integral over a collinear splitting parameter. We discuss the relation to the holomorphic anomaly that was previously studied in tree-level amplitudes and at the level of unitarity cuts. We derive and solve Ward identities for various scattering processes in the model. We classify the on-shell superamplitudes according to their Grassmann degree, in close analogy with the helicity classification of gluon amplitudes. We focus on MHV-like and NMHV-like amplitudes with up to six external particles, at one and two loops. Interestingly, the superconformal generator acting on the bosonic part of the amplitudes is Wittens twistor collinearity operator. We find that the first-order differential equations, together with physically motivated boundary conditions, uniquely fix the answer. All the cases considered give rise to uniform weight functions. Our most interesting example is a five-point non-planar hexa-box integral with an off-shell leg. It gives first indications on the function space needed for Higgs plus two jet production at next-to-next-to leading order.
We show that the soft photon, gluon and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.
Ward identities for reggeons are studied in the framework of effective action approach to the QCD in Regge kinematics. It is shown that they require introduction of new contributions not present in the reggeon diagrams initially. Application to vertices RR$to$RP and RR$to$RRP are considered and diagrams which have to be added to the QCD ones are found.
Basic properties of gauge theories in the framework of Faddeev-Popov (FP) method, Batalin-Vilkovisky (BV) formalism, functional renormalization group approach are considered. The FP- and BV- quantizations are characterized by the BRST symmetry while the BRST symmetry is broken in the FRG approach. It is shown that the FP-method, the BV-formalism and the FRG approach can be provided with the Slavnov-Taylor identity, the Ward identity and the modified Slavnov-Taylor identity respectively. It is proved that using the background field method, the background gauge invariance of effective action within the FP and FRG quantization procedures can be achieved in non-linear gauges. The gauge dependence problem within the FP-, BV- and FRG quantizations is studied. Arguments allowing to state impossibility of gauge independence of physical results obtained within the FRG approach are given.