Do you want to publish a course? Click here

Positron driven muon source for a muon collider

92   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMittance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.



rate research

Read More

A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Six dimensional cooling in long-period helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids.
Muon collider detector design and interaction region optimization are strongly correlated by the beam-induced background that finally determines the detector performance. Therefore, it is crucial to be able to study and optimize both of them simultaneously, being able to quantify the effects of interaction region elements modification on the beam-induced background fluxes and composition. An advanced simulation tool, based on the LineBuilder and Fluka programs, has been developed to produce beam-induced background events and to study their characteristics when the interaction region active and passive elements are changed. The tool characteristics, as well as the performance against previous simulations are presented together with the feature that allows to deeply study the beam-induced background point of origin.
The investigation of the energy frontier in physics requires novel concepts for future colliders. The idea of a muon collider is very appealing since it would allow to study particle collisions at up to tens of TeV energy, while offering a cleaner experimental environment with respect to hadronic colliders. One key element in the muon collider design is the low-emittance muon production. Recently, the Low EMittance Muon Accelerator (LEMMA) collaboration has explored the muon pair production close to its kinematic threshold by annihilating 45 GeV positrons with electrons in a low Z material target. In this configuration, muons are emerging from the target with a naturally low-emittance. In this paper we describe the performance of a system of segmented absorbers with alternating active layers composed of fast Cherenkov detectors together with a muon identification technique based on this detector. Passive layers were made of tungsten. We collected data corresponding to muon and electron beams produced at the H2 line in the Nort Area of the European Organization for Nuclear Research (CERN) in September 2018.
A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.
158 - Y. Alexahin 2012
Muon Collider (MC) - proposed by G. I. Budker and A. N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of ~1-5 times 10^{34} cm^{-2}s^{-1}1. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا