Do you want to publish a course? Click here

Planck 2018 results. IX. Constraints on primordial non-Gaussianity

90   0   0.0 ( 0 )
 Added by Nicola Bartolo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +- 5.1; f_NL^equil = -26 +- 47; and f_NL^ortho = - 38 +- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged).



rate research

Read More

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNL^local= 2.7+/-5.8, fNL^equil= -42+/-75, and fNL^ortho= -25+-39 (68% CL statistical). NG is detected in the data; using skew-C_l statistics we find a nonzero bispectrum from residual point sources, and the ISW-lensing bispectrum at a level expected in the LambdaCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C_l, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, 3-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, c_s geq 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction r_D geq 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the 4-point function in the local model tauNL < 2800 (95% CL). These constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.
The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone fNL^local=2.5+-5.7, fNL^equil=-16+-70 and fNL^ortho=-34+-33(68%CL). Combining temperature and polarization data we obtain fNL^local=0.8+-5.0, fNL^equil=-4+-43 and fNL^ortho=-26+-21 (68%CL). The results are based on cross-validation of these estimators on simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with Minkowski functionals based measurements. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond fNL estimates, we present model-independent reconstructions of the CMB bispectrum and derive constraints on early universe scenarios that generate NG, including general single-field and axion inflation, initial state modifications, parity-violating tensor bispectra, and directionally dependent vector models. We also present a wide survey of scale-dependent oscillatory bispectra, and we look for isocurvature NG. Our constraint on the local primordial trispectrum amplitude is gNL^local=(-9.0+-7.7)x10^4 (68%CL), and we perform an analysis of additional trispectrum shapes. The global picture is one of consistency with the premises of the LambdaCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.[abridged]
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatures in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
We use data from the WMAP temperature maps to constrain a scale-dependent generalization of the popular local model for primordial non-Gaussianity. In the model where the parameter fNL is allowed to run with scale k, fNL(k) = fNL* (k/k_piv)^n, we constrain the running to be n = 0.30(+1.9)(-1.2) at 95% confidence, marginalized over the amplitude fNL*. The constraints depend somewhat on the prior probabilities assigned to the two parameters. In the near future, constraints from a combination of Planck and large-scale structure surveys are expected to improve this limit by about an order of magnitude and usefully constrain classes of inflationary models.
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_mathrm{s}=0.9649pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V (phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا