Do you want to publish a course? Click here

Primordial Non-Gaussianity

97   0   0.0 ( 0 )
 Added by Marco Celoria
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatures in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.

rate research

Read More

Enormous information about interactions is contained in the non-Gaussianities of the primordial curvature perturbations, which are essential to break the degeneracy of inflationary models. We study the primordial bispectra for G-inflation models predicting both sharp and broad peaks in the primordial scalar power spectrum. We calculate the non-Gaussianity parameter $f_{mathrm{NL}}$ in the equilateral limit and squeezed limit numerically, and confirm that the consistency relation holds in these models. Even though $f_{mathrm{NL}}$ becomes large at the scales before the power spectrum reaches the peak and the scales where there are wiggles in the power spectrum, it remains to be small at the peak scales. Therefore, the contributions of non-Gaussianity to the scalar induced secondary gravitational waves and primordial black hole abundance are expected to be negligible.
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +- 5.1; f_NL^equil = -26 +- 47; and f_NL^ortho = - 38 +- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged).
Primordial black holes (PBHs) cannot be produced abundantly enough to be the dark matter in canonical single-field inflation under slow roll. This conclusion is robust to local non-Gaussian correlations between long- and short-wavelength curvature modes, which we show have no effect in slow roll on local primordial black hole abundances. For the prototypical model which evades this no go, ultra-slow roll (USR), these squeezed non-Gaussian correlations have at most an order unity effect on the variance of PBH-producing curvature fluctuations for models that would otherwise fail to form sufficient PBHs. Moreover, the transition out of USR, which is necessary for a successful model, suppresses even this small enhancement unless it causes a large increase in the inflaton kinetic energy in a fraction of an e-fold, which we call a large and fast transition. Along the way we apply the in-in formalism, the delta N formalism, and gauge transformations to compute non-Gaussianities and illuminate different aspects of the physical origin of these results. Local non-Gaussianity in the squeezed limit does not weaken the Gaussian conclusion that PBHs as dark matter in canonical single-field inflation require a complicated and fine-tuned potential shape with an epoch where slow roll is transiently violated.
We investigate future constraints on primordial local-type non-Gaussianity from 21 cm angular power spectrum from minihalos. We particularly focus on the trispectrum of primordial curvature perturbations which are characterized by the non-linearity parameters $tau_{rm NL}$ and $g_{rm NL}$. We show that future measurements of minihalo 21 cm angular power spectrum can probe these non-linearity parameters with an unprecedented precision of $tau_{rm NL}sim30$ and $g_{rm NL}sim2times10^3$ for Square Kilometre Array (SKA) and $tau_{rm NL}sim0.6$ and $g_{rm NL}sim8times10^2$ for Fast Fourier Transform Telescope (FFTT). These levels of sensitivity would give significant implications for models of the inflationary Universe and the origin of cosmic density fluctuations.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا