Do you want to publish a course? Click here

A Flexible Multi-Facility Capacity Expansion Problem with Risk Aversion

56   0   0.0 ( 0 )
 Added by Sixiang Zhao
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies flexible multi-facility capacity expansion with risk aversion. In this setting, the decision maker can periodically expand the capacity of facilities given observations of uncertain demand. We model this situation as a multi-stage stochastic programming problem. We express risk aversion in this problem through conditional value-at-risk (CVaR), and we formulate a mean-CVaR objective. To solve the multi-stage problem, we optimize over decision rules. In particular, we approximate the full policy space of the problem with a tractable family of if-then policies. Subsequently, a decomposition algorithm is proposed to optimize the decision rule. This algorithm decomposes the model over scenarios and it updates solutions via the subgradients of the recourse function. We demonstrate that this algorithm can quickly converge to high-performance policies. To illustrate the practical effectiveness of this method, a case study on the waste-to-energy system in Singapore is presented. These simulation results show that by adjusting the weight factor of the objective function, decision makers are able to trade off between a risk-averse policy that has a higher expected cost but a lower value-at-risk, and a risk-neutral policy that has a lower expected cost but a higher value-at-risk risk.

rate research

Read More

100 - Run Chen , Andrew L. Liu 2021
This paper applies the N-block PCPM algorithm to solve multi-scale multi-stage stochastic programs, with the application to electricity capacity expansion models. Numerical results show that the proposed simplified N-block PCPM algorithm, along with the hybrid decomposition method, exhibits much better scalability for solving the resulting deterministic, large-scale block-separable optimization problem when compared with the ADMM algorithm and the PHA algorithm. The superiority of the algorithms scalability is attributed to the two key features of the algorithm design: first, the proposed hybrid scenario-node-realization decomposition method with extended nonanticipativity constraints can decompose the original problem under various uncertainties of different temporal scales; second, when applying the N-block PCPM algorithm to solve the resulting deterministic, large-scale N-block convex optimization problem, the technique of orthogonal projection we exploit greatly simplifies the iteration steps and reduce the communication overhead among all computing units, which also contributes to the efficiency of the algorithm.
In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool.
We consider thin incomplete financial markets, where traders with heterogeneous preferences and risk exposures have motive to behave strategically regarding the demand schedules they submit, thereby impacting prices and allocations. We argue that traders relatively more exposed to market risk tend to submit more elastic demand functions. Noncompetitive equilibrium prices and allocations result as an outcome of a game among traders. General sufficient conditions for existence and uniqueness of such equilibrium are provided, with an extensive analysis of two-trader transactions. Even though strategic behaviour causes inefficient social allocations, traders with sufficiently high risk tolerance and/or large initial exposure to market risk obtain more utility gain in the noncompetitive equilibrium, when compared to the competitive one.
178 - Shreya Bose , Ibrahim Ekren 2020
We show that the problem of existence of equilibrium in Kyles continuous time insider trading model ([31]) can be tackled by considering a system of quasilinear parabolic equation and a Fokker-Planck equation coupled via a transport type constraint. By obtaining a stochastic representation for the solution of such a system, we show the well-posedness of solutions and study the properties of the equilibrium obtained for small enough risk aversion parameter. In our model, the insider has exponential type utility and the belief of the market on the distribution of the price at final time can be non-Gaussian.
93 - Jessica Martin 2020
This work provides analysis of a variant of the Risk-Sharing Principal-Agent problem in a single period setting with additional constant lower and upper bounds on the wage paid to the Agent. First the effect of the extra constraints on optimal contract existence is analyzed and leads to conditions on utilities under which an optimum may be attained. Solution characterization is then provided along with the derivation of a Borch rule for Limited Liability. Finally the CARA utility case is considered and a closed form optimal wage and action are obtained. This allows for analysis of the classical CARA utility and gaussian setting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا