Do you want to publish a course? Click here

Effective risk aversion in thin risk-sharing markets

100   0   0.0 ( 0 )
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

We consider thin incomplete financial markets, where traders with heterogeneous preferences and risk exposures have motive to behave strategically regarding the demand schedules they submit, thereby impacting prices and allocations. We argue that traders relatively more exposed to market risk tend to submit more elastic demand functions. Noncompetitive equilibrium prices and allocations result as an outcome of a game among traders. General sufficient conditions for existence and uniqueness of such equilibrium are provided, with an extensive analysis of two-trader transactions. Even though strategic behaviour causes inefficient social allocations, traders with sufficiently high risk tolerance and/or large initial exposure to market risk obtain more utility gain in the noncompetitive equilibrium, when compared to the competitive one.



rate research

Read More

The risk and return profiles of a broad class of dynamic trading strategies, including pairs trading and other statistical arbitrage strategies, may be characterized in terms of excursions of the market price of a portfolio away from a reference level. We propose a mathematical framework for the risk analysis of such strategies, based on a description in terms of price excursions, first in a pathwise setting, without probabilistic assumptions, then in a Markovian setting. We introduce the notion of delta-excursion, defined as a path which deviates by delta from a reference level before returning to this level. We show that every continuous path has a unique decomposition into delta-excursions, which is useful for the scenario analysis of dynamic trading strategies, leading to simple expressions for the number of trades, realized profit, maximum loss and drawdown. As delta is decreased to zero, properties of this decomposition relate to the local time of the path. When the underlying asset follows a Markov process, we combine these results with Itos excursion theory to obtain a tractable decomposition of the process as a concatenation of independent delta-excursions, whose distribution is described in terms of Itos excursion measure. We provide analytical results for linear diffusions and give new examples of stochastic processes for flexible and tractable modeling of excursions. Finally, we describe a non-parametric scenario simulation method for generating paths whose excursion properties match those observed in empirical data.
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.
We propose a hedging approach for general contingent claims when liquidity is a concern and trading is subject to transaction cost. Multiple assets with different liquidity levels are available for hedging. Our risk criterion targets a tradeoff between minimizing the risk against fluctuations in the stock price and incurring low liquidity costs. Following c{C}etin U., Jarrow R.A., and Protter P. (2004) we work in an arbitrage-free setting assuming a supply curve for each asset. In discrete time, following the ideas in Schweizer M. (1998) and Lamberton D., Pham H., Schweizer M. (1998) we prove the existence of a locally risk-minimizing strategy under mild conditions on the price process. Under stochastic and time-dependent liquidity risk we give a closed-form solution for an optimal strategy in the case of a linear supply curve model. Finally we show how our hedging method can be applied in energy markets where futures with different maturities are available for trading. The futures closest to their delivery period are usually the most liquid but depending on the contingent claim not necessary optimal in terms of hedging. In a simulation study we investigate this tradeoff and compare the resulting hedge strategies with the classical ones.
The large majority of risk-sharing transactions involve few agents, each of whom can heavily influence the structure and the prices of securities. This paper proposes a game where agents strategic sets consist of all possible sharing securities and pricing kernels that are consistent with Arrow-Debreu sharing rules. First, it is shown that agents best response problems have unique solutions. The risk-sharing Nash equilibrium admits a finite-dimensional characterisation and it is proved to exist for arbitrary number of agents and be unique in the two-agent game. In equilibrium, agents declare beliefs on future random outcomes different than their actual probability assessments, and the risk-sharing securities are endogenously bounded, implying (among other things) loss of efficiency. In addition, an analysis regarding extremely risk tolerant agents indicates that they profit more from the Nash risk-sharing equilibrium as compared to the Arrow-Debreu one.
We study combinations of risk measures under no restrictive assumption on the set of alternatives. We develop and discuss results regarding the preservation of properties and acceptance sets for the combinations of risk measures. One of the main results is the representation for resulting risk measures from the properties of both alternative functionals and combination functions. To that, we build on the development of a representation for arbitrary mixture of convex risk measures. In this case, we obtain a penalty that recalls the notion of inf-convolution under theoretical measure integration. As an application, we address the context of probability-based risk measurements for functionals on the set of distribution functions. We develop results related to this specific context. We also explore features of individual interest generated by our framework, such as the preservation of continuity properties, the representation of worst-case risk measures, stochastic dominance and elicitability. We also address model uncertainty measurement under our framework and propose a new class of measures for this task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا