Do you want to publish a course? Click here

Numerical meshless solution of high-dimensional sine-Gordon equations via Fourier HDMR-HC approximation

107   0   0.0 ( 0 )
 Added by Xiaopeng Luo Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, an implicit time stepping meshless scheme is proposed to find the numerical solution of high-dimensional sine-Gordon equations (SGEs) by combining the high dimensional model representation (HDMR) and the Fourier hyperbolic cross (HC) approximation. To ensure the sparseness of the relevant coefficient matrices of the implicit time stepping scheme, the whole domain is first divided into a set of subdomains, and the relevant derivatives in high-dimension can be separately approximated by the Fourier HDMR-HC approximation in each subdomain. The proposed method allows for stable large time-steps and a relatively small number of nodes with satisfactory accuracy. The numerical examples show that the proposed method is very attractive for simulating the high-dimensional SGEs.



rate research

Read More

When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.
We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral equations on a semi-infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation). We extend and improve a FFT-based method for the Wiener-Hopf equation due to Henery, expressing it in terms of the Hilbert transform, and computing the latter in a more sophisticated way with sinc functions. We then generalise our method to the Fredholm equation reformulating it as two coupled Wiener-Hopf equations and solving them iteratively. We provide numerical tests and open-source code.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case.
In this work a general approach to compute a compressed representation of the exponential $exp(h)$ of a high-dimensional function $h$ is presented. Such exponential functions play an important role in several problems in Uncertainty Quantification, e.g. the approximation of log-normal random fields or the evaluation of Bayesian posterior measures. Usually, these high-dimensional objects are intractable numerically and can only be accessed pointwise in sampling methods. In contrast, the proposed method constructs a functional representation of the exponential by exploiting its nature as a solution of an ordinary differential equation. The application of a Petrov--Galerkin scheme to this equation provides a tensor train representation of the solution for which we derive an efficient and reliable a posteriori error estimator. Numerical experiments with a log-normal random field and a Bayesian likelihood illustrate the performance of the approach in comparison to other recent low-rank representations for the respective applications. Although the present work considers only a specific differential equation, the presented method can be applied in a more general setting. We show that the composition of a generic holonomic function and a high-dimensional function corresponds to a differential equation that can be used in our method. Moreover, the differential equation can be modified to adapt the norm in the a posteriori error estimates to the problem at hand.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا