Do you want to publish a course? Click here

Nearly maximal violation of the Mermin-Klyshko inequality with multimode entangled coherent states

108   0   0.0 ( 0 )
 Added by Zhirong Zhong
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entangled coherent states for multiple bosonic modes, also referred to as multimode cat states, not only are of fundamental interest, but also have practical applications. The nonclassical correlation among these modes is well characterized by the violation of the Mermin-Klyshko inequality. We here study Mermin-Klyshko inequality violations for such multi-mode entangled states with rotated quantum-number parity operators. Our results show that the Mermin-Klyshko signal obtained with these operators can approach the maximal value even when the average quantum number in each mode is only 1, and the inequality violation exponentially increases with the number of entangled modes. The correlations among the rotated parities of the entangled bosonic modes are in distinct contrast with those among the displaced parities, with which a nearly maximal Mermin-Klyshko inequality violation requires the size of the cat state to be increased by about 15 times.



rate research

Read More

113 - Soojoon Lee , Jinhyoung Lee , 2009
We study the explicit relation between violation of Bell inequalities and bipartite distillability of multi-qubit states. It has been shown that even though for $Nge 8$ there exist $N$-qubit bound entangled states which violates a Bell inequality [Phys. Rev. Lett. {bf 87}, 230402 (2001)], for all the states violating the inequality there exists at least one splitting of the parties into two groups such that pure-state entanglement can be distilled [Phys. Rev. Lett. {bf 88}, 027901 (2002)]. We here prove that for all $N$-qubit states violating the inequality the number of distillable bipartite splits increases exponentially with $N$, and hence the probability that a randomly chosen bipartite split is distillable approaches one exponentially with $N$, as $N$ tends to infinity. We also show that there exists at least one $N$-qubit bound entangled state violating the inequality if and only if $Nge 6$.
The experimental test of Bells inequality is mainly focused on Clauser-Horne-Shimony-Holt (CHSH) form, which provides a quantitative bound, while little attention has been pained on the violation of Wigner inequality (WI). Based on the spin coherent state quantum probability statistics we in the present paper extend the WI and its violation to arbitrary two-spin entangled states with antiparallel and parallel spin-polarizations. The local part of density operator gives rise to the WI while the violation is a direct result of non-local interference between two components of the entangled states. The Wigner measuring outcome correlation denoted by $W$ is always less than or at most equal to zero for the local realist model ($% W_{lc_{{}}}leq 0$) regardless of the specific initial state. On the other hand the violation of WI is characterized by any positive value of $W$, which possesses a maximum violation bound $W_{max }$ $=1/2$. We conclude that the WI is equally convenient for the experimental test of violation by the quantum entanglement.
We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states. We find that if a given three-qubit pure state has the minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality.
388 - Ming-Guang Hu , Dong-Ling Deng , 2008
We investigate the maximal violations for both sides of the $d$-dimensional CGLMP inequality by using the Bell operator method. It turns out that the maximal violations have a decelerating increase as the dimension increases and tend to a finite value at infinity. The numerical values are given out up to $d=10^6$ for positively maximal violations and $d=2times 10^5$ for negatively maximal violations. Counterintuitively, the negatively maximal violations tend to be a little stronger than the positively maximal violations. Further we show the states corresponding to these maximal violations and compare them with the maximally entangled states by utilizing entangled degree defined by von Neumann entropy. It shows that their entangled degree tends to some nonmaximal value as the dimension increases.
We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality is upper bounded by 3/2 and specify the two-qubit states where this quantum upper bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states, we obtain the same upper bound 3/2 for violation of the original Bell inequality under Alice and Bob spin measurements, but we have not yet been able to show that this quantum upper bound is the least one. We discuss experimental consequences of our mathematical study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا