Do you want to publish a course? Click here

Stimulated Generation of Magnetrons powered below the Self-Excitation Threshold Voltage

141   0   0.0 ( 0 )
 Added by Grigory Kazakevich
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modern CW or pulsed superconducting accelerators of megawatts beams require efficient RF sources controllable in phase and power. It is desirable to have an individual RF power source with power up to hundreds of kW for each Superconductive RF (SRF) cavity. For pulsed accelerators the pulse duration in millisecond range is required. The efficiency of the traditional RF sources (klystrons, IOTs, solid-state amplifiers) in comparison to magnetrons is lower and the cost of unit of RF power is significantly higher. Typically, the cost of RF sources and their operation is a significant part of the total project cost and operation. The magnetron-based RF sources with a cost of power unit of 1-3 dollars per Watt would significantly reduce the capital and operation costs in comparison with the traditional RF sources. This arouses interest in magnetron RF sources for use in modern accelerators. A recently developed kinetic model describing the principle of magnetron operation and subsequent experiments resulted in an innovative technique producing the stimulated generation of magnetrons powered below the self-excitation threshold voltage. The magnetron operation in this regime is stable, low noise, controllable in phase and power, and provides higher efficiency than other types of RF power sources. It allows operation in CW and pulse modes (at large duty factor). For pulsed operation this technique does not require pulse modulators to form RF pulses. It also looks as a promising opportunity to extend magnetron life time. The developed technique, its experimental verification and a brief explanation of the kinetic model substantiating the technique are presented and discussed in this article.



rate research

Read More

The Self Stimulated Undulator Klystron (SSUK) and its possible applications in the Particle Accelerator Physics, incoherent Self-Stimulated Undulator Radiation Sources (SSUR) and Free-Electron Lasers (FEL) are discussed.
88 - Julien Laurat 2004
We study theoretically and experimentally the quantum properties of a type II frequency degenerate optical parametric oscillator below threshold with a quarter-wave plate inserted inside the cavity which induces a linear coupling between the orthogonally polarized signal and idler fields. This original device provides a good insight into general properties of two-mode gaussian states, illustrated in terms of covariance matrix. We report on the experimental generation of two-mode squeezed vacuum on non-orthogonal quadratures depending on the plate angle. After a simple operation, the entanglement is maximized and put into standard form, textit{i.e.} quantum correlations and anti-correlations on orthogonal quadratures. A half-sum of squeezed variances as low as $0.33 pm 0.02$, well below the unit limit for inseparability, is obtained and the entanglement measured by the entropy of formation.
203 - E.G.Bessonov 2010
We investigated the phenomena of self-stimulation of incoherent emission from an undulator installed in the linear accelerator or quasi-isochronous storage ring. We discuss possible applications of these phenomena for the beam physics also.
We present a quantum-theoretical treatment of biphoton generation in single-resonant type-II parametric down-conversion. The nonlinear medium is continuously pumped and is placed inside a cavity which is resonant for the signal field, but nonresonant for the idler deflected by an intra-cavity polarizing beam splitter. The intensity of the classical pump is assumed to be sufficiently low in order to yield a biphoton production rate that is small compared to the cavity loss rate. Explicit expressions are derived for the rate of biphoton generation and for the biphoton wave function. The output spectra of the signal and idler field are determined, as well as the second-order signal-idler cross-correlation function which is shown to be asymmetric with respect to the time delay. Due to frequency entanglement in the signal-idler photon pair, the idler spectrum is found to reveal the longitudinal mode structure of the cavity, even though the idler field is not resonant.
93 - Arnout Beckers 2019
This paper presents a physics-based model for the threshold voltage in bulk MOSFETs valid from room down to cryogenic temperature (4.2 K). The proposed model is derived from Poissons equation including bandgap widening, intrinsic carrier-density scaling, and incomplete ionization. We demonstrate that accounting for incomplete ionization in the expression of the threshold voltage is critical for an accurate estimation of the current. The model is validated with our experimental results from nMOSFETs of a 28-nm CMOS process. The developed model is a key element for a cryo-CMOS compact model and can serve as a guide to optimize processes for high-performance cryo-computing and ultra-low-power quantum computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا