Do you want to publish a course? Click here

Directly Imaging Rocky Planets from the Ground

94   0   0.0 ( 0 )
 Added by Benjamin Mazin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the past three decades instruments on the ground and in space have discovered thousands of planets outside the solar system. These observations have given rise to an astonishingly detailed picture of the demographics of short-period planets, but are incomplete at longer periods where both the sensitivity of transit surveys and radial velocity signals plummet. Even more glaring is that the spectra of planets discovered with these indirect methods are either inaccessible (radial velocity detections) or only available for a small subclass of transiting planets with thick, clear atmospheres. Direct detection can be used to discover and characterize the atmospheres of planets at intermediate and wide separations, including non-transiting exoplanets. Today, a small number of exoplanets have been directly imaged, but they represent only a rare class of young, self-luminous super-Jovian-mass objects orbiting tens to hundreds of AU from their host stars. Atmospheric characterization of planets in the <5 AU regime, where radial velocity (RV) surveys have revealed an abundance of other worlds, is technically feasible with 30-m class apertures in combination with an advanced AO system, coronagraph, and suite of spectrometers and imagers. There is a vast range of unexplored science accessible through astrometry, photometry, and spectroscopy of rocky planets, ice giants, and gas giants. In this whitepaper we will focus on one of the most ambitious science goals --- detecting for the first time habitable-zone rocky (<1.6 R_Earth) exoplanets in reflected light around nearby M-dwarfs



rate research

Read More

51 - Thayne Currie 2019
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) project is an instrument on the Subaru telescope that is pushing the frontiers of what is possible with ground-based high-contrast imaging of extrasolar planets. The system features key breakthroughs in wavefront sensing and coronagraphy to yield extremely high Strehl ratio corrections and deep planet-to-star contrasts, even for optically faint stars. SCExAO is coupled to a near-infrared integral field spectrograph -- CHARIS -- yielding robust planet spectral characterization. In its first full year of operations, SCExAO has already clarified the properties of candidate companions around $kappa$ And, LkCa 15, and HD 163296, showing the former to be a likely low-gravity, planet-mass object and the latter two to be misidentified disk signals. SCExAOs planet imaging capabilities in the near future will be further upgraded; the system is emerging as a prototype of the kind of dedicated planet-imaging system that could directly detect an Earth-like planet around a nearby low-mass star with Extremely Large Telescopes like the Thirty Meter Telescope.
High contrast direct imaging of exoplanets can provide many important observables, including measurements of the orbit, spectra that probe the lower layers of the atmosphere, and phase variations of the planet, but cannot directly measure planet radius or mass. Our future understanding of directly imaged exoplanets will therefore rely on extrapolated models of planetary atmospheres and bulk composition, which need robust calibration. We estimate the population of extrasolar planets that could serve as calibrators for these models. Critically, this population of standard planets must be accessible to both direct imaging and the transit method, allowing for radius measurement. We show that the search volume of a direct imaging mission eventually overcomes the transit probability falloff with semi-major axis, so that as long as cold planets are not exceedingly rare, the population of transiting planets and directly imageable planets overlaps. Using current extrapolations of Kepler occurrence rates, we estimate that ~8 standard planets could be characterized shortward of 800 nm with an ambitious future direct imaging mission like LUVOIR-A and several dozen could be detected at V band. We show the design space that would expand the sample size and discuss the extent to which ground- and space-based surveys could detect this small but crucial population of planets.
141 - A. Zurlo , D. Mesa , S. Desidera 2018
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favorable RV systems to observe are : HD,142, GJ,676, HD,39091, HIP,70849, and HD,30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing (GTO). To reduce the intensity of the starlight and reveal faint companions, we used Principle Component Analysis (PCA) algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5$sigma$ contrast in the J band $vs$ separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 MJup around these stars, confirming the substellar nature of these RV companions.
Young stars and planets both grow by accreting material from the proto-stellar disks. Planetary structure and formation models assume a common origin of the building blocks, yet, thus far, there is no direct conclusive observational evidence correlating the composition of rocky planets to their host stars. Here we present evidence of a chemical link between rocky planets and their host stars. The iron-mass fraction of the most precisely characterized rocky planets is compared to that of their building blocks, as inferred from the atmospheric composition of their host stars. We find a clear and statistically significant correlation between the two. We also find that this correlation is not one-to-one, owing to the disk-chemistry and planet formation processes. Therefore rocky planet composition depends on the chemical composition of the proto-planetary disk and contains signatures about planet formation processes.
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define $eta_oplus$ as the HZ occurrence of planets with radius between 0.5 and 1.5 $R_oplus$ orbiting stars with effective temperatures between 4800 K and 6300 K. We find that $eta_oplus$ for the conservative HZ is between $0.37^{+0.48}_{-0.21}$ (errors reflect 68% credible intervals) and $0.60^{+0.90}_{-0.36}$ planets per star, while the optimistic HZ occurrence is between $0.58^{+0.73}_{-0.33}$ and $0.88^{+1.28}_{-0.51}$ planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with $95%$ confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا