Do you want to publish a course? Click here

MobiVSR: A Visual Speech Recognition Solution for Mobile Devices

365   0   0.0 ( 0 )
 Added by Yaman Kumar
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Visual speech recognition (VSR) is the task of recognizing spoken language from video input only, without any audio. VSR has many applications as an assistive technology, especially if it could be deployed in mobile devices and embedded systems. The need of intensive computational resources and large memory footprint are two of the major obstacles in developing neural network models for VSR in a resource constrained environment. We propose a novel end-to-end deep neural network architecture for word level VSR called MobiVSR with a design parameter that aids in balancing the models accuracy and parameter count. We use depthwise-separable 3D convolution for the first time in the domain of VSR and show how it makes our model efficient. MobiVSR achieves an accuracy of 73% on a challenging Lip Reading in the Wild dataset with 6 times fewer parameters and 20 times lesser memory footprint than the current state of the art. MobiVSR can also be compressed to 6 MB by applying post training quantization.



rate research

Read More

Violence is an epidemic in Brazil and a problem on the rise world-wide. Mobile devices provide communication technologies which can be used to monitor and alert about violent situations. However, current solutions, like panic buttons or safe words, might increase the loss of life in violent situations. We propose an embedded artificial intelligence solution, using natural language and speech processing technology, to silently alert someone who can help in this situation. The corpus used contains 400 positive phrases and 800 negative phrases, totaling 1,200 sentences which are classified using two well-known extraction methods for natural language processing tasks: bag-of-words and word embeddings and classified with a support vector machine. We describe the proof-of-concept product in development with promising results, indicating a path towards a commercial product. More importantly we show that model improvements via word embeddings and data augmentation techniques provide an intrinsically robust model. The final embedded solution also has a small footprint of less than 10 MB.
Learned speech representations can drastically improve performance on tasks with limited labeled data. However, due to their size and complexity, learned representations have limited utility in mobile settings where run-time performance can be a significant bottleneck. In this work, we propose a class of lightweight non-semantic speech embedding models that run efficiently on mobile devices based on the recently proposed TRILL speech embedding. We combine novel architectural modifications with existing speed-up techniques to create embedding models that are fast enough to run in real-time on a mobile device and exhibit minimal performance degradation on a benchmark of non-semantic speech tasks. One such model (FRILL) is 32x faster on a Pixel 1 smartphone and 40% the size of TRILL, with an average decrease in accuracy of only 2%. To our knowledge, FRILL is the highest-quality non-semantic embedding designed for use on mobile devices. Furthermore, we demonstrate that these representations are useful for mobile health tasks such as non-speech human sounds detection and face-masked speech detection. Our models and code are publicly available.
This work describes an interactive decoding method to improve the performance of visual speech recognition systems using user input to compensate for the inherent ambiguity of the task. Unlike most phoneme-to-word decoding pipelines, which produce phonemes and feed these through a finite state transducer, our method instead expands words in lockstep, facilitating the insertion of interaction points at each word position. Interaction points enable us to solicit input during decoding, allowing users to interactively direct the decoding process. We simulate the behavior of user input using an oracle to give an automated evaluation, and show promise for the use of this method for text input.
Visual speech recognition is a challenging research problem with a particular practical application of aiding audio speech recognition in noisy scenarios. Multiple camera setups can be beneficial for the visual speech recognition systems in terms of improved performance and robustness. In this paper, we explore this aspect and provide a comprehensive study on combining multiple views for visual speech recognition. The thorough analysis covers fusion of all possible view angle combinations both at feature level and decision level. The employed visual speech recognition system in this study extracts features through a PCA-based convolutional neural network, followed by an LSTM network. Finally, these features are processed in a tandem system, being fed into a GMM-HMM scheme. The decision fusion acts after this point by combining the Viterbi path log-likelihoods. The results show that the complementary information contained in recordings from different view angles improves the results significantly. For example, the sentence correctness on the test set is increased from 76% for the highest performing single view ($30^circ$) to up to 83% when combining this view with the frontal and $60^circ$ view angles.
Multimodal learning allows us to leverage information from multiple sources (visual, acoustic and text), similar to our experience of the real world. However, it is currently unclear to what extent auxiliary modalities improve performance over unimodal models, and under what circumstances the auxiliary modalities are useful. We examine the utility of the auxiliary visual context in Multimodal Automatic Speech Recognition in adversarial settings, where we deprive the models from partial audio signal during inference time. Our experiments show that while MMASR models show significant gains over traditional speech-to-text architectures (upto 4.2% WER improvements), they do not incorporate visual information when the audio signal has been corrupted. This shows that current methods of integrating the visual modality do not improve model robustness to noise, and we need better visually grounded adaptation techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا