No Arabic abstract
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})le 24$. With the completion of a project to compute the Hodge numbers of free quotients of complete intersection Calabi-Yau threefolds, most of which were computed in Refs. [1-3] and the remainder in Ref. [4], many new points have been added to the tip of the Hodge plot, updating the reviews by Davies and Candelas in Refs. [1, 5]. In view of this and other recent constructions of Calabi-Yau threefolds with small height, we have produced an updated list.
We investigate the delicate interplay between the types of singular fibers in elliptic fibrations of Calabi-Yau threefolds (used to formulate F-theory) and the matter representation of the associated Lie algebra. The main tool is the analysis and the appropriate interpretation of the anomaly formula for six-dimensional supersymmetric theories. We find that this anomaly formula is geometrically captured by a relation among codimension two cycles on the base of the elliptic fibration, and that this relation holds for elliptic fibrations of any dimension. We introduce a Tate cycle which efficiently describes this relationship, and which is remarkably easy to calculate explicitly from the Weierstrass equation of the fibration. We check the anomaly cancellation formula in a number of situations and show how this formula constrains the geometry (and in particular the Euler characteristic) of the Calabi-Yau threefold.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold.
We investigate the swampland distance conjecture (SDC) in the complex moduli space of type II compactifications on one-parameter Calabi-Yau threefolds. This class of manifolds contains hundreds of examples and, in particular, a subset of 14 geometries with hypergeometric differential Picard-Fuchs operators. Of the four principal types of singularities that can occur - specified by their limiting mixed Hodge structure - only the K-points and the large radius points (or more generally the M-points) are at infinite distance and therefore of interest to the SDC. We argue that the conjecture is fulfilled at the K- and the M-points, including models with several M-points, using explicit calculations in hypergeometric models which contain typical examples of all these degenerations. Together with previous work on the large radius points, this suggests that the SDC is indeed fulfilled for one-parameter Calabi-Yau spaces.
We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primary states whose total conformal weights are less than 0.656. Moreover, the number of such primary states grows at least linearly in the total Hodge number. We discuss implications of these results for Calabi-Yau geometry.
Recent studies (arXiv:1610.07916, arXiv:1711.07921, arXiv:1807.00186) of six-dimensional supersymmetric gauge theories that are engineered by a class of toric Calabi-Yau threefolds $X_{N,M}$, have uncovered a vast web of dualities. In this paper we analyse consequences of these dualities from the perspective of the partition functions $mathcal{Z}_{N,M}$ (or the free energy $mathcal{F}_{N,M}$) of these theories. Focusing on the case $M=1$, we find that the latter is invariant under the group $mathbb{G}(N)times S_N$: here $S_N$ corresponds to the Weyl group of the largest gauge group that can be engineered from $X_{N,1}$ and $mathbb{G}(N)$ is a dihedral group, which acts in an intrinsically non-perturbative fashion and which is of infinite order for $Ngeq 4$. We give an explicit representation of $mathbb{G}(N)$ as a matrix group that is freely generated by two elements which act naturally on a specific basis of the Kahler moduli space of $X_{N,1}$. While we show the invariance of $mathcal{Z}_{N,1}$ under $mathbb{G}(N)times S_N$ in full generality, we provide explicit checks by series expansions of $mathcal{F}_{N,1}$ for a large number of examples. We also comment on the relation of $mathbb{G}(N)$ to the modular group that arises due to the geometry of $X_{N,1}$ as a double elliptic fibration, as well as T-duality of Little String Theories that are constructed from $X_{N,1}$.