Do you want to publish a course? Click here

Majorana dimers and holographic quantum error-correcting codes

65   0   0.0 ( 0 )
 Added by Alexander Jahn
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects of the AdS/CFT correspondence. In this work, we introduce a versatile framework of Majorana dimers capturing the intersection of stabilizer and Gaussian Majorana states. This picture allows for an efficient contraction with a simple diagrammatic interpretation and is amenable to analytical study of holographic quantum error-correcting codes. Equipped with this framework, we revisit the recently proposed hyperbolic pentagon code (HyPeC). Relating its logical code basis to Majorana dimers, we efficiently compute boundary state properties even for the non-Gaussian case of generic logical input. The dimers characterizing these boundary states coincide with discrete bulk geodesics, leading to a geometric picture from which properties of entanglement, quantum error correction, and bulk/boundary operator mapping immediately follow. We also elaborate upon the emergence of the Ryu-Takayanagi formula from our model, which realizes many of the properties of the recent bit thread proposal. Our work thus elucidates the connection between bulk geometry, entanglement, and quantum error correction in AdS/CFT, and lays the foundation for new models of holography.



rate research

Read More

Although Majorana platforms are promising avenues to realizing topological quantum computing, they are still susceptible to errors from thermal noise and other sources. We show that the error rate of Majorana qubits can be drastically reduced using a 1D repetition code. The success of the code is due the imbalance between the phase error rate and the flip error rate. We demonstrate how a repetition code can be naturally constructed from segments of Majorana nanowires. We find the optimal lifetime may be extended from a millisecond to over one second.
158 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are potentially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
In this paper, based on the nonbinary graph state, we present a systematic way of constructing good non-binary quantum codes, both additive and nonadditive, for systems with integer dimensions. With the help of computer search, which results in many interesting codes including some nonadditive codes meeting the Singleton bounds, we are able to construct explicitly four families of optimal codes, namely, $[[6,2,3]]_p$, $[[7,3,3]]_p$, $[[8,2,4]]_p$ and $[[8,4,3]]_p$ for any odd dimension $p$ and a family of nonadditive code $((5,p,3))_p$ for arbitrary $p>3$. In the case of composite numbers as dimensions, we also construct a family of stabilizer codes $((6,2cdot p^2,3))_{2p}$ for odd $p$, whose coding subspace is {em not} of a dimension that is a power of the dimension of the physical subsystem.
Error correcting codes with a universal set of transversal gates are the desiderata of realising quantum computing. Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, it also rules out codes which are covariant with respect to the action of transversal unitary operations forming continuous symmetries. In this work, starting from an arbitrary code, we construct approximate codes which are covariant with respect to local $SU(d)$ symmetries using quantum reference frames. We show that our codes are capable of efficiently correcting different types of erasure errors. When only a small fraction of the $n$ qudits upon which the code is built are erased, our covariant code has an error that scales as $1/n^2$, which is reminiscent of the Heisenberg limit of quantum metrology. When every qudit has a chance of being erased, our covariant code has an error that scales as $1/n$. We show that the error scaling is optimal in both cases. Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the AdS-CFT duality.
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudit-flip errors. Moreover, they use pre-shared entanglement between encoder and decoder to simplify the theory of quantum error correction and increase the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples exceeding the introduced Gilbert-Varshamov bound are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا