Do you want to publish a course? Click here

Polarizations of gravitational waves in $f(R)$ gravity

192   0   0.0 ( 0 )
 Added by Yungui Gong
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.



rate research

Read More

110 - Yungui Gong , Shaoqi Hou 2017
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar $+$ and $times$ polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
In this work we shall develop a quantitative approach for extracting predictions on the primordial gravitational waves energy spectrum for $f(R)$ gravity. We shall consider two distinct models which yield different phenomenology, one pure $f(R)$ gravity model and one Chern-Simons corrected potential-less $k$-essence $f(R)$ gravity model in the presence of radiation and non-relativistic perfect matter fluids. The two $f(R)$ gravity models were carefully chosen in order for them to describe in a unified way inflation and the dark energy era, in both cases viable and compatible with the latest Planck data. Also both models mimic the $Lambda$-Cold-Dark-Matter model and specifically the pure $f(R)$ model only at late times, but the Chern-Simons $k$-essence model during the whole evolution of the model up to the radiation domination era. In addition they guarantee a smooth transition from the inflationary era to the radiation, matter domination and subsequently to the dark energy era. Using a WKB approach introduced in the relevant literature by Nishizawa, we derive formulas depending on the redshift that yield the modified gravity effect, quantified by a multiplicative factor, a ``damping in front of the General Relativistic waveform. In order to calculate the effect of the modified gravity, which is the ``damping factor, we solve numerically the Friedmann equations using appropriate initial conditions and by introducing specific statefinder quantities. As we show, the pure $f(R)$ gravity gravitational wave energy spectrum is slightly enhanced, but it remains well below the sensitivity curves of future gravitational waves experiments. In contrast, the Chern-Simons $k$-essence $f(R)$ gravity model gravitational wave energy spectrum is significantly enhanced and two signals are predicted which can be verified by future gravitational wave experiments.
We discuss the scalar mode of gravitational waves emerging in the context of $F(R)$ gravity by taking into account the chameleon mechanism. Assuming a toy model with a specific matter distribution to reproduce the environment of detection experiment by a ground-based gravitational wave observatory, we find that chameleon mechanism remarkably suppresses the scalar wave in the atmosphere of Earth, compared with the tensor modes of the gravitational waves. We also discuss the possibility to detect and constrain scalar waves by the current gravitational observatories and advocate a necessity of the future space-based observations.
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einsteins General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations.The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا