In this paper we continue the studies on the integer sparse recovery problem that was introduced in cite{FKS} and studied in cite{K},cite{KS}. We provide an algorithm for the recovery of an unknown sparse integer vector for the measurement matrix described in cite{KS} and estimate the number of arithmetical operations.
In a previous paper, we have given an algebraic model to the set of intervals. Here, we apply this model in a linear frame. We define a notion of diagonalization of square matrices whose coefficients are intervals. But in this case, with respect to the real case, a matrix of order $n$ could have more than $n$ eigenvalues (the set of intervals is not factorial). We consider a notion of central eigenvalues permits to describe criterium of diagonalization. As application, we define a notion of Exponential mapping.
We discuss the application of the Mountain Pass algorithm to the so-called quasi-linear Schrodinger equation, which is naturally associated with a class of nonsmooth functionals so that the classical algorithm is not directly applicable.
Signals and images with discontinuities appear in many problems in such diverse areas as biology, medicine, mechanics, and electrical engineering. The concrete data are often discrete, indirect and noisy measurements of some quantities describing the signal under consideration. A frequent task is to find the segments of the signal or image which corresponds to finding the discontinuities or jumps in the data. Methods based on minimizing the piecewise constant Mumford-Shah functional -- whose discretized version is known as Potts functional -- are advantageous in this scenario, in particular, in connection with segmentation. However, due to their non-convexity, minimization of such functionals is challenging. In this paper we propose a new iterative minimization strategy for the multivariate Potts functional dealing with indirect, noisy measurements. We provide a convergence analysis and underpin our findings with numerical experiments.
In this letter, we consider the Multi-Robot Efficient Search Path Planning (MESPP) problem, where a team of robots is deployed in a graph-represented environment to capture a moving target within a given deadline. We prove this problem to be NP-hard, and present the first set of Mixed-Integer Linear Programming (MILP) models to tackle the MESPP problem. Our models are the first to encompass multiple searchers, arbitrary capture ranges, and false negatives simultaneously. While state-of-the-art algorithms for MESPP are based on simple path enumeration, the adoption of MILP as a planning paradigm allows to leverage the powerful techniques of modern solvers, yielding better computational performance and, as a consequence, longer planning horizons. The models are designed for computing optimal solutions offline, but can be easily adapted for a distributed online approach. Our simulations show that it is possible to achieve 98% decrease in computational time relative to the previous state-of-the-art. We also show that the distributed approach performs nearly as well as the centralized, within 6% in the settings studied in this letter, with the advantage of requiring significant less time - an important consideration in practical search missions.
Integer-forcing (IF) linear receiver has been recently introduced for multiple-input multiple-output (MIMO) fading channels. The receiver has to compute an integer linear combination of the symbols as a part of the decoding process. In particular, the integer coefficients have to be chosen based on the channel realizations, and the choice of such coefficients is known to determine the receiver performance. The original known solution of finding these integers was based on exhaustive search. A practical algorithm based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice reduction algorithms was also proposed recently. In this paper, we propose a low-complexity method based on complex LLL algorithm to obtain the integer coefficients for the IF receiver. For the 2 X 2 MIMO channel, we study the effectiveness of the proposed method in terms of the ergodic rate. We also compare the bit error rate (BER) of our approach with that of other linear receivers, and show that the suggested algorithm outperforms the minimum mean square estimator (MMSE) and zero-forcing (ZF) linear receivers, but trades-off error performance for complexity in comparison with the IF receiver based on exhaustive search or on HKZ and Minkowski lattice reduction algorithms.