Do you want to publish a course? Click here

Iterative Potts minimization for the recovery of signals with discontinuities from indirect measurements -- the multivariate case

181   0   0.0 ( 0 )
 Added by Lukas Kiefer
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Signals and images with discontinuities appear in many problems in such diverse areas as biology, medicine, mechanics, and electrical engineering. The concrete data are often discrete, indirect and noisy measurements of some quantities describing the signal under consideration. A frequent task is to find the segments of the signal or image which corresponds to finding the discontinuities or jumps in the data. Methods based on minimizing the piecewise constant Mumford-Shah functional -- whose discretized version is known as Potts functional -- are advantageous in this scenario, in particular, in connection with segmentation. However, due to their non-convexity, minimization of such functionals is challenging. In this paper we propose a new iterative minimization strategy for the multivariate Potts functional dealing with indirect, noisy measurements. We provide a convergence analysis and underpin our findings with numerical experiments.



rate research

Read More

We propose a set of iterative regularization algorithms for the TV-Stokes model to restore images from noisy images with Gaussian noise. These are some extensions of the iterative regularization algorithm proposed for the classical Rudin-Osher-Fatemi (ROF) model for image reconstruction, a single step model involving a scalar field smoothing, to the TV-Stokes model for image reconstruction, a two steps model involving a vector field smoothing in the first and a scalar field smoothing in the second. The iterative regularization algorithms proposed here are Richardsons iteration like. We have experimental results that show improvement over the original method in the quality of the restored image. Convergence analysis and numerical experiments are presented.
We consider reconstructing multi-channel images from measurements performed by photon-counting and energy-discriminating detectors in the setting of multi-spectral X-ray computed tomography (CT). Our aim is to exploit the strong structural correlation that is known to exist between the channels of multi-spectral CT images. To that end, we adopt the multi-channel Potts prior to jointly reconstruct all channels. This prior produces piecewise constant solutions with strongly correlated channels. In particular, edges are enforced to have the same spatial position across channels which is a benefit over TV-based methods. We consider the Potts prior in two frameworks: (a) in the context of a variational Potts model, and (b) in a Potts-superiorization approach that perturbs the iterates of a basic iterative least squares solver. We identify an alternating direction method of multipliers (ADMM) approach as well as a Potts-superiorized conjugate gradient method as particularly suitable. In numerical experiments, we compare the Potts prior based approaches to existing TV-type approaches on realistically simulated multi-spectral CT data and obtain improved reconstruction for compound solid bodies.
250 - Zhongxing Sun , Wei Cui , 2021
This paper is concerned with the problem of recovering a structured signal from a relatively small number of corrupted random measurements. Sharp phase transitions have been numerically observed in practice when different convex programming procedures are used to solve this problem. This paper is devoted to presenting theoretical explanations for these phenomenons by employing some basic tools from Gaussian process theory. Specifically, we identify the precise locations of the phase transitions for both constrained and penalized recovery procedures. Our theoretical results show that these phase transitions are determined by some geometric measures of structure, e.g., the spherical Gaussian width of a tangent cone and the Gaussian (squared) distance to a scaled subdifferential. By utilizing the established phase transition theory, we further investigate the relationship between these two kinds of recovery procedures, which also reveals an optimal strategy (in the sense of Lagrange theory) for choosing the tradeoff parameter in the penalized recovery procedure. Numerical experiments are provided to verify our theoretical results.
81 - Bin Wu , Xue-Cheng Tai , 2020
The paper presents a fully coupled TV-Stokes model, and propose an algorithm based on alternating minimization of the objective functional whose first iteration is exactly the modified TV-Stokes model proposed earlier. The model is a generalization of the second order Total Generalized Variation model. A convergence analysis is given.
Minimizing the Mumford-Shah functional is frequently used for smoothing signals or time series with discontinuities. A significant limitation of the standard Mumford-Shah model is that linear trends -- and in general polynomial trends -- in the data are not well preserved. This can be improved by building on splines of higher order which leads to higher order Mumford-Shah models. In this work, we study these models in the univariate situation: we discuss important differences to the first order Mumford-Shah model, and we obtain uniqueness results for their solutions. As a main contribution, we derive fast minimization algorithms for Mumford-Shah models of arbitrary orders. We show that the worst case complexity of all proposed schemes is quadratic in the length of the signal. Remarkably, they thus achieve the worst case complexity of the fastest solver for the piecewise constant Mumford-Shah model (which is the simplest model of the class). Further, we obtain stability results for the proposed algorithms. We complement these results with a numerical study. Our reference implementation processes signals with more than 10,000 elements in less than one second.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا