No Arabic abstract
We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecules macrocycle following metalation. Interestingly, comparison with previously published data for cobalt porphine adsorbed on the same surface evidences a distinct increase in the average height of the N atoms above the surface through the series 2H-P, Cu-P, cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted adsorption strength, with 2H-P having the smallest adsorption height despite the weakest calculated adsorption energy. In addition, our findings suggest that for these macrocyclic compounds, substrate-to-molecule charge transfer and adsorption strength may not be univocally correlated.
We report that metal-free phthalocyanine (H2Pc) molecules with a central cavity are able to incorporate Ag atoms from an Ag(110) surface thus creating silver-phthalocyanine (AgPc). The reaction was investigated by means of scanning tunneling microscopy (STM) under ultrahigh vacuum, and the metalation of ce{H2Pc} at the interface was confirmed with X-ray photoelectron spectroscopy. Three different kinds of molecules were found on the surface that are assigned to H2Pc, the corresponding dehydrogenated molecules (Pc) and AgPc. The relative amounts of Pc and AgPc increase with increasing annealing temperature. We suggest that the reaction with Ag atoms from the steps of the surface occurs favorably only for already dehydrogenated molecules; thus, the metalation of H2Pc is likely limited by the heat-induced dehydrogenation. Density functional theory simulations of the reaction path are presented to corroborate this hypothesis.
The adsorption geometry of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) on Cu(111) is determined with high precision using two independent methods, experimentally by quantitative low energy electron diffraction (LEED-I(V)) and theoretically by dispersion corrected density functional theory (DFT-vdW). Structural refinement using both methods consistently results in similar adsorption sites and geometries. Thereby a level of confidence is reached that allows deduction of subtle structural details such as molecular deformations or relaxations of copper substrate atoms.
Using a van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)], we perform ab initio calculations for the adsorption energy of benzene (Bz) on Cu(111) as a function of lateral position and height. We find that the vdW-DF inclusion of nonlocal correlations (responsible for dispersive interactions) changes the relative stability of eight binding-position options and increases the binding energy by over an order of magnitude, achieving good agreement with experiment. The admolecules can move almost freely along a honeycomb web of corridors passing between fcc and hcp hollow sites via bridge sites. Our diffusion barriers (for dilute and two condensed adsorbate phases) are consistent with experimental observations. Further vdW-DF calculations suggest that the more compact (hexagonal) Bz-overlayer phase, with lattice constant a = 6.74 AA, is due to direct Bz-Bz vdW attraction, which extends to ~8 AA. We attribute the second, sparser hexagonal Bz phase, with a = 10.24 AA, to indirect electronic interactions mediated by the metallic surface state on Cu(111). To support this claim, we use a formal Harris-functional approach to evaluate nonperturbationally the asymptotic form of this indirect interaction. Thus, we can account well for benzene self-organization on Cu(111).
There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how far-from-equilibrium closed quantum system can behave as if relaxing to a stable equilibrium. Equilibration dynamics has been traditionally studied with a focus on the so-called quenches of large-scale many-body systems. Alternatively, we consider here the equilibration of a molecular model system describing the double proton transfer reaction in porphine. Using numerical simulations, we show that equilibration in this context indeed takes place and does so very rapidly ($sim !! 200$fs) for initial states induced by pump-dump laser pulse control with energies well above the synchronous tunneling barrier.
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of $1$-$2$ nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the Au-NPs: while sodium and some of the anions (e.g., Cl$^-$, HCF$^{3-}$) adsorb more at the `edgy (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF$_4$$^-$, PF$_6$$^-$, Nip$^-$) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip$^-$, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially-resolved electrostatic potentials, as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Huckel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between effective surface charge and potential. We find for all salts negative effective surface potentials in the range from $-10$ mV for NaCl down to about $-80$ mV for NaNip, consistent with typical experimental ranges for the zeta-potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the $pm 0.5$ V range.