No Arabic abstract
We study the topology of closed, simply-connected, 6-dimensional Riemannian manifolds of positive sectional curvature which admit isometric actions by $SU(2)$ or $SO(3)$. We show that their Euler characteristic agrees with that of the known examples, i.e. $S^6$, $mathbb{CP}^3$, the Wallach space $SU(3)/T^2$ and the biquotient $SU(3)//T^2$. We also classify, up to equivariant diffeomorphism, certain actions without exceptional orbits and show that there are strong restrictions on the exceptional strata.
In this paper, we show that a closed $n$-dimensional generalized ($lambda, n+m)$-Einstein manifold with positive isotropic curvature and constant scalar curvature must be isometric to either a sphere ${Bbb S}^n$, or a product ${Bbb S}^{1} times {Bbb S}^{n-1}$ of a circle with an $(n-1)$-sphere, up to finite cover and rescaling.
Let M be a Riemannian n-manifold with n greater than or equal to 3. For k between 1 and n, we say M has k-positive Ricci curvature if at every point of M the sum of any k eigenvalues of the Ricci curvature is strictly positive. In particular, one positive Ricci curvature is equivalent to positive Ricci curvature and n-positive Ricci curvature is equivalent to positive scalar curvature. Let G be the fundamental group of the closed manifold M. We say that G is virtually free if G contains a free subgroup of finite index, or equivalently, if some finite cover of M has a fundamental group that is a free group. In this paper we will prove: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, such that (n-1)-eigenvalues of the Ricci curvature are strictly positive. Then the fundamental group of M is virtually free. As an immediate consequence we have: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, with 2-positive Ricci curvature. Then the fundamental group of M is virtually free.
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern-Weil theory implies useful integral formulas, which are then combined with results from Seiberg--Witten theory.
In this note we prove that a four-dimensional compact oriented half-confor-mally flat Riemannian manifold $M^4$ is topologically $mathbb{S}^{4}$ or $mathbb{C}mathbb{P}^{2},$ provided that the sectional curvatures all lie in the interval $[frac{3sqrt{3}-5}{4},,1].$ In addition, we use the notion of biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a four-dimensional compact manifold is homeomorphic to a connected sum of copies of the complex projective plane or the $4$-sphere.
In this paper we study the class of compact Kahler manifolds with positive orthogonal Ricci curvature: $Ric^perp>0$. First we illustrate examples of Kahler manifolds with $Ric^perp>0$ on Kahler C-spaces, and construct ones on certain projectivized vector bundles. These examples show the abundance of Kahler manifolds which admit metrics of $Ric^perp>0$. Secondly we prove some (algebraic) geometric consequences of the condition $Ric^perp>0$ to illustrate that the condition is also quite restrictive. Finally this last point is made evident with a classification result in dimension three and a partial classification in dimension four.