Do you want to publish a course? Click here

CO Outflow Candidates Toward the W3/4/5 Complex I: The Sample and its Spatial Distribution

65   0   0.0 ( 0 )
 Added by Yingjie Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the Purple Mountain Observatory Delingha 13.7 m telescope, we conducted a large-scale $^{12}$CO $left(J=1 rightarrow 0right)$ outflow survey (over $sim$ 110 deg$^2$) toward the W3/4/5 complex and its surroundings. In total, 459 outflow candidates were identified. Approximately 62% (284) were located in the Perseus arm, including W3/4/5 complex and its surroundings, while $sim$ 35% (162) were located in the Local arm, $sim$ 1% (5) in the Outer arm, and $sim$ 2% (8) in two interarm regions. This result indicated that star formation was concentrated in the Galactic spiral arms. The detailed spatial distribution of the outflow candidates showed that the Perseus arm presented the most active star formation among the study regions. The W3/4/5 complex is a great region to research massive star formation in a triggered environment. A key region, which has been well-studied by other researches, is in the eastern high-density W3 complex that neighbors the W4 complex. Two shell-like structures in the Local arm contain candidates that can be used to study the impact on star formation imposed by massive or intermediate-mass stars in relatively isolated systems. The majority of outflow candidates in the two interarm regions and the Outer arm are located in filamentary structures.



rate research

Read More

Here we present high spatial resolution (<1 arcsecond) observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C2H5CN], dimethyl ether [(CH3)2O], methyl formate [HCOOCH3], formic acid [HCOOH], acetone [(CH3)2CO], SiO, methanol [CH3OH], and methyl cyanide [CH3CN] in Orion-KL at lambda = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination, $delta <$ 30 deg) at low radio-frequencies, over the range 72-231 MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (Galactic latitude, $|b| >$ 10 deg) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the brightest radio-sources ($S_{mathrm{151MHz}} >$ 4 Jy), the majority of which are active galactic nuclei with powerful radio-jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature, and perform internal matching, in order to improve sample completeness (which is estimated to be $>$ 95.5%). This results in a catalogue of 1,863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR; $S_{mathrm{178MHz}} >$ 10.9 Jy). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam ($sim$2 arcmin at 200 MHz), and we label 67% of the sample as single, 26% as double, 4% as triple, and 3% as having complex morphology at $sim$1 GHz (45-arcsec resolution). Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6-arcsec resolution at 3.4 micron) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. [Abstract abridged for arXiv submission.]
We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images, combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex, and determined their structure and extension. We constructed extinction-limited samples for five principal clusters, and constructed K-band luminosity functions (KLF) that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and show small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.
We performed a survey in the SiO $J=5rightarrow4$ line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs), 86 protostellar candidates, and 69 young HII regions. We detected SiO $J=5rightarrow4$ line emission in 102 sources, with a detection rate of 57%, 37%, and 65% for IRDCs, protostellar candidates, and young HII regions, respectively. We find both broad line with Full Widths at Zero Power (FWZP) $>$ 20 kms and narrow line emissons of SiO in objects at various evolutionary stages, likely associated with high-velocity shocks and low-velocity shocks, respectively. The SiO luminosities do not show apparent differences among various evolutionary stages in our sample. We find no correlation between the SiO abundance and the luminosity-to-mass ratio, indicating that the SiO abundance does not vary significantly in regions at different evolutionary stages of star formation.
Aims. We investigate the spatial distribution of a collection of absorbing gas clouds, some associated with the dense, massive star-forming core NGC6334 I, and others with diffuse foreground clouds. For the former category, we aim to study the dynamical properties of the clouds in order to assess their potential to feed the accreting protostellar cores. Methods. We use spectral imaging from the Herschel SPIRE iFTS to construct a map of HF absorption at 243 micron in a 6x3.5 arcmin region surrounding NGC6334 I and I(N). Results. The combination of new, spatially fully sampled, but spectrally unresolved mapping with a previous, single-pointing, spectrally resolved HF signature yields a 3D picture of absorbing gas clouds in the direction of NGC6334. Toward core I, the HF equivalent width matches that of the spectrally resolved observation. The distribution of HF absorption is consistent with three of the seven components being associated with this dense star-forming envelope. For two of the remaining four components, our data suggest that these clouds are spatially associated with the larger scale filamentary star-forming complex. Our data also implies a lack of gas phase HF in the envelope of core I(N). Using a simple description of adsorption onto and desorption from dust grain surfaces, we show that the overall lower temperature of the envelope of source I(N) is consistent with freeze-out of HF, while it remains in the gas phase in source I. Conclusions. We use the HF molecule as a tracer of column density in diffuse gas (n(H) ~ 10^2 - 10^3 cm^-3), and find that it may uniquely trace a relatively low density portion of the gas reservoir available for star formation that otherwise escapes detection. At higher densities prevailing in protostellar envelopes (>10^4 cm^-3), we find evidence of HF depletion from the gas phase under sufficiently cold conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا