Do you want to publish a course? Click here

Conduction mechanism and switchable photovoltaic effect in (111) oriented BiFe$_{0.95}$Mn$_{0.05}$O$_{3}$ thin film

109   0   0.0 ( 0 )
 Added by Said Yousfi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Epitaxial 200nm BiFe$_{0.95}$Mn$_{0.05}$O$_{3}$ (BFO) film was grown by pulsed laser deposition on (111) oriented SrTiO3 substrate buffered with a 50nm thick SrRuO$_{3}$ electrode. The BFO thin film shows a rhombohedral structure and a large remnant polarization of Pr = 104 $mu$C/cm$^{2}$. By comparing I(V) characteristics with different conduction models we reveal the presence of both bulk limited Poole-Frenkel and Schottky interface mechanisms and each one dominates in a specific range of temperature. At room temperature and under 10mW laser illumination, the as grown BFO film presents short-circuit current density (Jsc) and open circuit voltage (Voc) of 2.25mA/cm$^{2}$ and -0.55V respectively. This PV effect can be switched by applying positive voltage pulses higher than the coercive field. For low temperatures a large Voc value of about -4.5V (-225kV/cm) is observed which suggests a bulk non-centrosymmetric origin of the PV response.



rate research

Read More

Dielectric response and conduction mechanism were investigated for a multiferroic BiFe$_{0.95}$Mn$_{0.05}$O$_3$ epitaxial thin film. A contribution from a thermally activated interface (0.37 eV) and the bulk of the film on the dielectric response were observed through the comparison between experimental results and equivalent circuit model. The low frequency interface relaxation signatures strongly suggest a Maxwell-Wagner space charge origin. The alternative current conductivity deduced from the model follows a power law frequency dependence suggesting a polaronic hopping mechanism while the low frequency limit is in perfect agreement with the direct current conduction mechanism. The current-voltage characteristics were indeed correlated with Schottky-Simmons interface limited transport with activation energy of 0.36 eV, close to the one extracted from the impedance analysis. Such analysis of the electrostatic landscape and dielectric behaviour may help to further understanding the anomalous photo-induced properties in the BiFeO$_3$ system.
Strain engineering with different substrate facets is promising for tuning functional properties of thin film perovskite oxides. By choice of facet, different surface symmetries and chemical bond directions for epitaxial interfaces can be tailored. Here, preparation of well-defined pseudo-cubic (111)-oriented orthorhombic substrates of DyScO3 , GdScO3 , and NdGaO3 is reported. The choice of orthorhombic facet, (011)o or (101)o , both corresponding to pseudo-cubic (111)pc , gives vicinal surfaces with single or double (111pc layer terrace step heights, respectively, impacting subsequent thin film growth. Orthorhombic LaFeO3 epitaxy on the (101)o facet reveals a distinction between alternating (111)pc layers, both during and after growth. The observed differences are explained based on the oxygen octahedral tilt pattern relative to the two orthorhombic (111)pc surfaces. This robust structural detail in the orthorhombic perovskite oxides enables utilisation of different (111)pc facets for property engineering, through polyhedral connectivity control and cation coordination at epitaxial interfaces.
Employing elastic and inelastic neutron scattering (INS) techniques, we report on detailed microscopic properties of the ferromagnetism in he magnetic topological insulator (Bi$_{0.95}$Mn$_{0.05}$)$_{2}$Te$_{3}$. Neutron diffraction of polycrystalline samples show the ferromagnetic (FM) ordering is long-range within the basal plane, and mainly 2D in character with short-range correlations between layers below $T_{mathrm{C}} approx 13$ K. Despite the random distribution of the dliute Mn atoms, we find that the 2D-like magnetic peaks are commensurate with the chemical structure, and the absence of (00L) magnetic peaks denote that the Mn$^{2+}$ magnetic moments are normal to the basal planes. Surprisingly, we observed collective magnetic excitations, in this dilute magnetic system. Despite the dilute nature, the excitations are typical of quasi-2D FM systems, albeit are severely broadened at short wavelengths, likely due to the random spatial distribution of Mn atoms in the Bi planes. Detailed analysis of the INS provide energy scales of the exchange couplings and the single ion anisotropy.
Relaxor behavior and lattice dynamics have been studied for a single crystal of K$_{1-x}$Li$_x$TaO$_3$ $(x=0.05)$, where a small amount of a Ca impurity ($sim 15$~ppm) was incorporated. The dielectric measurements revealed Debye-like relaxations with Arrhenius activation energies of 80 and 240 meV that are assigned to Li$^+$ dipoles and the Li$^+$-Li$^+$ dipolar pairs, respectively. In the neutron scattering results, diffuse scattering ridges appear around the nuclear Bragg peaks below $sim 150$ K and phonon line broadening features start to appear at even higher temperatures suggesting that polar nano-regions (PNRs) start to form at these temperatures. These results are supported by the dielectric data that reveal relaxor behavior starting at $sim 200$ K on cooling. From analyses of the diffuse intensities, the displacements include a uniform phase shift of all of the atoms in addition to the atomic displacements corresponding to a polarization vector of the transverse optic soft ferroelectric mode, a finding that is analogous to that in the prototypical relaxor material Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$.
Aluminum scandium nitride alloy (Al1-xScxN) is regarded as a promising material for high-performance acoustic devices used in wireless communication systems. Phonon scattering and heat conduction processes govern the energy dissipation in acoustic resonators, ultimately determining their performance quality. This work reports, for the first time, on phonon scattering processes and thermal conductivity in Al1-xScxN alloys with the Sc content (x) up to 0.26. The thermal conductivity measured presents a descending trend with increasing x. Temperature-dependent measurements show an increase in thermal conductivity as the temperature increases at temperatures below 200K, followed by a plateau at higher temperatures (T> 200K). Application of a virtual crystal phonon conduction model allows us to elucidate the effects of boundary and alloy scattering on the observed thermal conductivity behaviors. We further demonstrate that the alloy scattering is caused mainly by strain-field difference, and less by the atomic mass difference between ScN and AlN, which is in contrast to the well-studied Al1-xGaxN and SixGe1-x alloy systems where atomic mass difference dominates the alloy scattering. This work studies and provides the quantitative knowledge for phonon scattering and the thermal conductivity in Al1-xScxN, paving the way for future investigation of materials and design of acoustic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا