No Arabic abstract
The relativistic Mott insulator Sr2IrO4 driven by large spin-orbit interaction is known for the Jeff = 1/2 antiferromagnetic state which closely resembles the electronic structure of parent compounds of superconducting cuprates. Here, we report the realization of hole-doped Sr2IrO4 by means of interfacial charge transfer in Sr2IrO4/LaNiO3 heterostructures. X-ray photoelectron spectroscopy on Ir 4f edge along with the X-ray absorption spectroscopy at Ni L2 edge confirmed that 5d electrons from Ir sites are transferred onto Ni sites, leading to markedly electronic reconstruction at the interface. Although the Sr2IrO4/LaNiO3 heterostructure remains non-metallic, we reveal that the transport behavior is no longer described by the Mott variable range hopping mode, but by the Efros-Shklovskii model. These findings highlight a powerful utility of interfaces to realize emerging electronic states of the Ruddlesden-Popper phases of Ir-based oxides.
The layered 5d transition metal oxide Sr2IrO4 has been shown to host a novel Jeff=1/2 Mott spin orbit insulating state with antiferromagnetic ordering, leading to comparisons with the layered cuprates. Here we study the effect of substituting Mn for Ir in single crystals of Sr2Ir0.9Mn0.1O4 through an investigation involving bulk measurements and resonant x-ray and neutron scattering. We observe a new long range magnetic structure emerge upon doping through a reordering of the spins from the basal plane to the c-axis with a reduced ordering temperature compared to Sr2IrO4. The strong enhancement of the magnetic x-ray scattering intensity at the L3 edge relative to the L2 edge indicates that the Jeff=1/2 state is robust and capable of hosting a variety of ground states.
In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental understanding of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.
The high-mobility conducting interface (CI) between LaAlO_{3}(LAO) and SrTiO_{3}(STO) has revealed many fascinating phenomena, including exotic magnetism and superconductivity. But, the formation mechanism of the CI has not been conclusively explained. Here, using in situ angle-resolved photoemission spectroscopy, we elucidated the mechanisms for the CI formation. In as-grown samples, we observed a built-in potential (V_{bi}) proportional to the polar LAO thickness starting from the first unit cell (UC) with CI formation appearing above 3 UCs. However, we found that the V bi is removed by synchrotron ultraviolet (UV)-irradiation; The built-in potential is recovered by oxygen gas (O_{2}(g))-exposure. Furthermore, after UV-irradiation, the CI appears even below 3UC of LAO. Our results demonstrate not only the V_{bi}-driven CI formation in asgrown LAO/STO, but also a new route to control of the interface state by UV lithographic patterning or other surface modification.
Lord Kelvin with his discovery of the anisotropic magnetoresistance (AMR) phenomenon in Ni and Fe was 70 years ahead of the formulation of relativistic quantum mechanics the effect stems from, and almost one and a half century ahead of spintronics whose first commercial applications relied on the AMR. Despite the long history and importance in magnetic sensing and memory technologies, the microscopic understanding of the AMR has struggled to go far beyond the basic notion of a relativistic magnetotransport phenomenon arising from combined effects on diffusing carriers of spin-orbit coupling and broken symmetry of a metallic ferromagnet. Our work demonstrates that even this seemingly generic notion of the AMR phenomenon needs revisiting as we observe the ohmic AMR effect in a nano-scale film of an antiferromagnetic (AFM) semiconductor Sr2IrO4 (SIO). Our work opens the recently proposed path for integrating semiconducting and spintronic technologies in AFMs. SIO is a particularly favorable material for exploring this path since its semiconducting nature is entangled with the AFM order and strong spin-orbit coupling. For the observation of the low-field Ohmic AMR in SIO we prepared an epitaxial heterostructure comprising a nano-scale SIO film on top of an epilayer of a FM metal La2/3Sr1/3MnO3 (LSMO). This allows the magnetic field control of the orientation of AFM spins in SIO via the exchange spring effect at the FM-AFM interface.
We have studied the evolution of magnetic and orbital excitations as a function of hole-doping in single crystal samples of Sr2Ir(1-x)Rh(x)O4 (0.07 < x < 0.42) using high resolution Ir L3-edge resonant inelastic x-ray scattering (RIXS). Within the antiferromagnetically ordered region of the phase diagram (x < 0.17) we observe highly dispersive magnon and spin-orbit exciton modes. Interestingly, both the magnon gap energy and the magnon bandwidth appear to increase as a function of doping, resulting in a hardening of the magnon mode with increasing hole doping. As a result, the observed spin dynamics of hole-doped iridates more closely resemble those of the electron-doped, rather than hole-doped, cuprates. Within the paramagnetic region of the phase diagram (0.17 < x < 0.42) the low-lying magnon mode disappears, and we find no evidence of spin fluctuations in this regime. In addition, we observe that the orbital excitations become essentially dispersionless in the paramagnetic phase, indicating that magnetic order plays a crucial role in the propagation of the spin-orbit exciton.