No Arabic abstract
We study mirror symmetry of type II strings on manifolds with the exceptional holonomy groups $G_2$ and Spin(7). Our central result is a construction of mirrors of Spin(7) manifolds realized as generalized connected sums. In parallel to twisted connected sum $G_2$ manifolds, mirrors of such Spin(7) manifolds can be found by applying mirror symmetry to the pair of non-compact manifolds they are glued from. To provide non-trivial checks for such geometric mirror constructions, we give a CFT analysis of mirror maps for Joyce orbifolds in several new instances for both the Spin(7) and the $G_2$ case. For all of these models we find possible assignments of discrete torsion phases, work out the action of mirror symmetry, and confirm the consistency with the geometrical construction. A novel feature appearing in the examples we analyse is the possibility of frozen singularities.
This paper shows how to construct anomaly free world sheet actions in string theory with $D$-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to $D$-branes and connections on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.
We give a construction of $G_2$ and $Spin(7)$ instantons on exceptional holonomy manifolds constructed by Bryant and Salamon, by using an ansatz of spherical symmetry coming from the manifolds being the total spaces of rank-4 vector bundles. In the $G_2$ case, we show that, in the asymptotically conical model, the connections are asymptotic to Hermitian Yang-Mills connections on the nearly Kahler $S^3times S^3$.
M-theory compactified on $G_2$-holonomy manifolds results in 4d $mathcal{N}=1$ supersymmetric gauge theories coupled to gravity. In this paper we focus on the gauge sector of such compactifications by studying the Higgs bundle obtained from a partially twisted 7d super Yang-Mills theory on a supersymmetric three-cycle $M_3$. We derive the BPS equations and find the massless spectrum for both abelian and non-abelian gauge groups in 4d. The mathematical tool that allows us to determine the spectrum is Morse theory, and more generally Morse-Bott theory. The latter generalization allows us to make contact with twisted connected sum (TCS) $G_2$-manifolds, which form the largest class of examples of compact $G_2$-manifolds. M-theory on TCS $G_2$-manifolds is known to result in a non-chiral 4d spectrum. We determine the Higgs bundle for this class of $G_2$-manifolds and provide a prescription for how to engineer singular transitions to models that have chiral matter in 4d.
Let $text{G}(n)$ be equal either to $text{PO}(n,1),text{PU}(n,1)$ or $text{PSp}(n,1)$ and let $Gamma leq text{G}(n)$ be a uniform lattice. Denote by $mathbb{H}^n_K$ the hyperbolic space associated to $text{G}(n)$, where $K$ is a division algebra over the reals of dimension $d=dim_{mathbb{R}} K$. Assume $d(n-1) geq 2$. In this paper we generalize natural maps to measurable cocycles. Given a standard Borel probability $Gamma$-space $(X,mu_X)$, we assume that a measurable cocycle $sigma:Gamma times X rightarrow text{G}(m)$ admits an essentially unique boundary map $phi:partial_infty mathbb{H}^n_K times X rightarrow partial_infty mathbb{H}^m_K$ whose slices $phi_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are atomless for almost every $x in X$. Then, there exists a $sigma$-equivariant measurable map $F: mathbb{H}^n_K times X rightarrow mathbb{H}^m_K$ whose slices $F_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are differentiable for almost every $x in X$ and such that $text{Jac}_a F_x leq 1$ for every $a in mathbb{H}^n_K$ and almost every $x in X$. The previous properties allow us to define the natural volume $text{NV}(sigma)$ of the cocycle $sigma$. This number satisfies the inequality $text{NV}(sigma) leq text{Vol}(Gamma backslash mathbb{H}^n_K)$. Additionally, the equality holds if and only if $sigma$ is cohomologous to the cocycle induced by the standard lattice embedding $i:Gamma rightarrow text{G}(n) leq text{G}(m)$, modulo possibly a compact subgroup of $text{G}(m)$ when $m>n$. Given a continuous map $f:M rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) x U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.