Do you want to publish a course? Click here

Nestings of rational homogeneous varieties

286   0   0.0 ( 0 )
 Added by Gianluca Occhetta
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the existence of sections of universal bundles on rational homogeneous varieties -- called nestings -- classifying them completely in the case in which the Lie algebra of the automorphism group of the variety is simple of classical type. In particular we show that, under this hypothesis, nestings do not exist unless there exists a proper algebraic subgroup of the automorphism group acting transitively on the base variety.



rate research

Read More

152 - Zhi Jiang 2021
In this paper, we study syzygies of rational homogeneous varieties. We extend Manivels result that a $p$-th power of an ample line bundle on a flag variety satisfies Propery $(N_p)$ to many rational homogeneous varieties of type $B$, $C$, $D$, and $G_2$.
Complete intersections inside rational homogeneous varieties provide interesting examples of Fano manifolds. For example, if $X = cap_{i=1}^r D_i subset G/P$ is a general complete intersection of $r$ ample divisors such that $K_{G/P}^* otimes mathcal{O}_{G/P}(-sum_i D_i)$ is ample, then $X$ is Fano. We first classify these Fano complete intersections which are locally rigid. It turns out that most of them are hyperplane sections. We then classify general hyperplane sections which are quasi-homogeneous.
232 - Ada Boralevi 2009
Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that all tangent bundles T_{G/P} are simple, meaning that their only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of these tangent bundles with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.
101 - Milena Wrobel 2018
We give an explicit description of the divisor class groups of rational trinomial varieties. As an application, we relate the iteration of Cox rings of any rational variety with torus action of complexity one to that of a Du Val surface.
110 - Qi Zhang 2004
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log $Q$-Fano varieties of dim $n$ are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا