Do you want to publish a course? Click here

Many-body chaos near a thermal phase transition

93   0   0.0 ( 0 )
 Added by Alexander Schuckert
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study many-body chaos in a (2+1)D relativistic scalar field theory at high temperatures in the classical statistical approximation, which captures the quantum critical regime and the thermal phase transition from an ordered to a disordered phase. We evaluate out-of-time ordered correlation functions (OTOCs) and find that the associated Lyapunov exponent increases linearly with temperature in the quantum critical regime, and approaches the non-interacting limit algebraically in terms of a fluctuation parameter. OTOCs spread ballistically in all regimes, also at the thermal phase transition, where the butterfly velocity is maximal. Our work contributes to the understanding of the relation between quantum and classical many-body chaos and our method can be applied to other field theories dominated by classical modes at long wavelengths.



rate research

Read More

Linking thermodynamic variables like temperature $T$ and the measure of chaos, the Lyapunov exponents $lambda$, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we prove that in thermalised flows $lambda propto sqrt{T}$, in agreement with results from frustrated spin systems. This reveals an underlying universality and provides evidence for recent conjectures on the thermal scaling of $lambda$. We also reconcile seemingly disparate effects -- equilibration on one hand and pushing systems out-of-equilibrium on the other -- of many-body chaos by relating $lambda$ to $T$ through the dynamical structures of the flow.
71 - Tomaz Prosen 2021
We propose a new type of locally interacting quantum circuits which are generated by unitary interactions round-a-face (IRF). Specifically, we discuss a set (or manifold) of dual-unitary IRFs with local Hilbert space dimension $d$ (DUIRF$(d)$) which generate unitary evolutions both in space and time directions of an extended 1+1 dimensional lattice. We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite dimensional completely positive trace preserving unital maps, in complete analogy to recently studied circuits made of dual unitary brick gates (DUBG). In fact, we show that the simplest non-trivial (non-vanishing) local correlation functions in dual-unitary IRF circuits involve observables non-trivially supported on at least two sites. We completely characterise the 10-dimensional manifold of DUIRF$(2)$ for qubits ($d=2$) and provide, for $d=3,4,5,6,7$, empirical estimates of its dimensionality based on numerically determined dimensions of tangent spaces at an ensemble of random instances of dual-unitary IRF gates. In parallel, we apply the same algorithm to determine ${rm dim},{rm DUBG}(d)$ and show that they are of similar order though systematically larger than ${rm dim},{rm DUIRF}(d)$ for $d=2,3,4,5,6,7$. It is remarkable that both sets have rather complex topology for $dge 3$ in the sense that the dimension of the tangent space varies among different randomly generated points of the set. Finally, we provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions $d eq d$ residing at even/odd lattice sites.
Staring from the kicked rotator as a paradigm for a system exhibiting classical chaos, we discuss the role of quantum coherence resulting in dynamical localization in the kicked quantum rotator. In this context, the disorder-induced Anderson localization is also discussed. Localization in interacting, quantum many-body systems (many-body localization) may also occur in the absence of disorder, and a practical way to identify its occurrence is demonstrated for an interacting spin chain.
We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-particle level statistics by calculating the spectral form factor analytically using algebraic methods of random matrix theory, and match it with an exact numerical simulation. Despite the integrability of the theory, the many-body spectral rigidity is found to have a surprisingly rich landscape. In particular, we find a residual repulsion of distant many-body levels stemming from single-particle chaos, together with islands of level attraction. These results are encoded in an exponential ramp in the spectral form-factor, which we show to be a universal feature of non-ergodic many-fermion systems embedded in a chaotic medium.
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functions, and find that their characteristic time scales are given by the inverse gap of an effective Hamiltonian$-$or equivalently, a transfer matrix describing a classical Markov process. Our approach allows us to connect directly the Thouless time, $t_{text{Th}}$, determined by the spectral form factor, to transport properties and linear response correlators. Using tensor network methods, we determine the dynamical exponent, $z$, for a number of constrained, conserving models. We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics, depending on the severity of the constraints. In particular, we show that quantum systems with Fredkin constraints exhibit anomalous transport with dynamical exponent $z simeq 8/3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا