Do you want to publish a course? Click here

Probing quantum criticality and symmetry breaking at the microscopic level

68   0   0.0 ( 0 )
 Added by Sylvain Nascimbene
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an experimental study of the Lipkin-Meshkov-Glick model of quantum spins interacting at infinite range in a transverse magnetic field, which exhibits a ferromagnetic phase transition in the thermodynamic limit. We use Dysprosium atoms of electronic spin $J=8$, subjected to a quadratic Zeeman light shift, to simulate $2J=16$ interacting spins $1/2$. We probe the system microscopically using single magnetic sublevel resolution, giving access to the spin projection parity, which is the collective observable characterizing the underlying $mathbb{Z}_2$ symmetry. We measure the thermodynamic properties and dynamical response of the system, and study the quantum critical behavior around the transition point. In the ferromagnetic phase, we achieve coherent tunneling between symmetry-broken states, and test the link between symmetry breaking and the appearance of a finite order parameter.



rate research

Read More

146 - F. Ronning , T. Helm , K. Shirer 2017
Electronic nematics are exotic states of matter where electronic interactions break a rotational symmetry of the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Intriguingly such phases appear in the copper- and iron-based superconductors, and their role in establishing high-temperature superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of nematic character in the heavy fermion superconductor CeRhIn5. We observe a field-induced breaking of the electronic tetragonal symmetry of in the vicinity of an antiferromagnetic (AFM) quantum phase transition at Hc~50T. This phase appears in out-of-plane fields of H*~28T and is characterized by substantial in-plane resistivity anisotropy. The anisotropy can be aligned by a small in-plane field component, with no apparent connection to the underlying crystal structure. Furthermore no anomalies are observed in the magnetic torque, suggesting the absence of metamagnetic transitions in this field range. These observations are indicative of an electronic nematic character of the high field state in CeRhIn5. The appearance of nematic behavior in a phenotypical heavy fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be a commonality in such materials.
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.
151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
The existence of a paradoxical supersolid phase of matter, possessing the apparently incompatible properties of crystalline order and superfluidity, was predicted 50 years ago. Solid helium was the natural candidate, but there supersolidity has not been observed yet, despite numerous attempts. Ultracold quantum gases have recently shown the appearance of the periodic order typical of a crystal, due to various types of controllable interactions. A crucial feature of a D-dimensional supersolid is the occurrence of up to D+1 gapless excitations reflecting the Goldstone modes associated with the spontaneous breaking of two continuous symmetries: the breaking of phase invariance, corresponding to the locking of the phase of the atomic wave functions at the origin of superfluid phenomena, and the breaking of translational invariance due to the lattice structure of the system. The occurrence of such modes has been the object of intense theoretical investigations, but their experimental observation is still missing. Here we demonstrate the supersolid symmetry breaking through the appearance of two distinct compressional oscillation modes in a harmonically trapped dipolar Bose-Einstein condensate, reflecting the gapless Goldstone excitations of the homogeneous system. We observe that the two modes have different natures, with the higher frequency mode associated with an oscillation of the periodicity of the emergent lattice and the lower one characterizing the superfluid oscillations. Our work paves the way to explore the two quantum phase transitions between the superfluid, supersolid and solid-like configurations that can be accessed by tuning a single interaction parameter.
123 - C. Castelnovo 2008
We study a quantum phase transition between a phase which is topologically ordered and one which is not. We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all values of the coupling constant that takes the system across the phase transition. We compute the entanglement and the topological entropy of the system as a function of this coupling constant, and show that the topological entropy remains constant all the way up to the critical point, and jumps to zero beyond it. Despite the jump in the topological entropy, the transition is second order as detected via any local observable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا