Do you want to publish a course? Click here

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing

108   0   0.0 ( 0 )
 Added by Sami Abu-El-Haija
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Existing popular methods for semi-supervised learning with Graph Neural Networks (such as the Graph Convolutional Network) provably cannot learn a general class of neighborhood mixing relationships. To address this weakness, we propose a new model, MixHop, that can learn these relationships, including difference operators, by repeatedly mixing feature representations of neighbors at various distances. Mixhop requires no additional memory or computational complexity, and outperforms on challenging baselines. In addition, we propose sparsity regularization that allows us to visualize how the network prioritizes neighborhood information across different graph datasets. Our analysis of the learned architectures reveals that neighborhood mixing varies per datasets.

rate research

Read More

137 - Jianxin Li , Hao Peng , Yuwei Cao 2021
Graph neural networks (GNNs) have been widely used in deep learning on graphs. They can learn effective node representations that achieve superior performances in graph analysis tasks such as node classification and node clustering. However, most methods ignore the heterogeneity in real-world graphs. Methods designed for heterogeneous graphs, on the other hand, fail to learn complex semantic representations because they only use meta-paths instead of meta-graphs. Furthermore, they cannot fully capture the content-based correlations between nodes, as they either do not use the self-attention mechanism or only use it to consider the immediate neighbors of each node, ignoring the higher-order neighbors. We propose a novel Higher-order Attribute-Enhancing (HAE) framework that enhances node embedding in a layer-by-layer manner. Under the HAE framework, we propose a Higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning. HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics, and leverages the self-attention mechanism to explore content-based nodes interactions. The unique higher-order architecture of HAEGNN allows examining the first-order as well as higher-order neighborhoods. Moreover, HAEGNN shows good explainability as it learns the importances of different meta-paths and meta-graphs. HAEGNN is also memory-efficient, for it avoids per meta-path based matrix calculation. Experimental results not only show HAEGNN superior performance against the state-of-the-art methods in node classification, node clustering, and visualization, but also demonstrate its superiorities in terms of memory efficiency and explainability.
Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.
Knowledge representation of graph-based systems is fundamental across many disciplines. To date, most existing methods for representation learning primarily focus on networks with simplex labels, yet real-world objects (nodes) are inherently complex in nature and often contain rich semantics or labels, e.g., a user may belong to diverse interest groups of a social network, resulting in multi-label networks for many applications. The multi-label network nodes not only have multiple labels for each node, such labels are often highly correlated making existing methods ineffective or fail to handle such correlation for node representation learning. In this paper, we propose a novel multi-label graph convolutional network (ML-GCN) for learning node representation for multi-label networks. To fully explore label-label correlation and network topology structures, we propose to model a multi-label network as two Siamese GCNs: a node-node-label graph and a label-label-node graph. The two GCNs each handle one aspect of representation learning for nodes and labels, respectively, and they are seamlessly integrated under one objective function. The learned label representations can effectively preserve the inner-label interaction and node label properties, and are then aggregated to enhance the node representation learning under a unified training framework. Experiments and comparisons on multi-label node classification validate the effectiveness of our proposed approach.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at url{https://github.com/IBM/EvolveGCN}.
The robustness of the much-used Graph Convolutional Networks (GCNs) to perturbations of their input is becoming a topic of increasing importance. In this paper, the random GCN is introduced for which a random matrix theory analysis is possible. This analysis suggests that if the graph is sufficiently perturbed, or in the extreme case random, then the GCN fails to benefit from the node features. It is furthermore observed that enhancing the message passing step in GCNs by adding the node feature kernel to the adjacency matrix of the graph structure solves this problem. An empirical study of a GCN utilised for node classification on six real datasets further confirms the theoretical findings and demonstrates that perturbations of the graph structure can result in GCNs performing significantly worse than Multi-Layer Perceptrons run on the node features alone. In practice, adding a node feature kernel to the message passing of perturbed graphs results in a significant improvement of the GCNs performance, thereby rendering it more robust to graph perturbations. Our code is publicly available at:https://github.com/ChangminWu/RobustGCN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا