Do you want to publish a course? Click here

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs

97   0   0.0 ( 0 )
 Added by Jie Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at url{https://github.com/IBM/EvolveGCN}.



rate research

Read More

Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.
Graph Convolutional Network (GCN) has experienced great success in graph analysis tasks. It works by smoothing the node features across the graph. The current GCN models overwhelmingly assume that the node feature information is complete. However, real-world graph data are often incomplete and containing missing features. Traditionally, people have to estimate and fill in the unknown features based on imputation techniques and then apply GCN. However, the process of feature filling and graph learning are separated, resulting in degraded and unstable performance. This problem becomes more serious when a large number of features are missing. We propose an approach that adapts GCN to graphs containing missing features. In contrast to traditional strategy, our approach integrates the processing of missing features and graph learning within the same neural network architecture. Our idea is to represent the missing data by Gaussian Mixture Model (GMM) and calculate the expected activation of neurons in the first hidden layer of GCN, while keeping the other layers of the network unchanged. This enables us to learn the GMM parameters and network weight parameters in an end-to-end manner. Notably, our approach does not increase the computational complexity of GCN and it is consistent with GCN when the features are complete. We demonstrate through extensive experiments that our approach significantly outperforms the imputation-based methods in node classification and link prediction tasks. We show that the performance of our approach for the case with a low level of missing features is even superior to GCN for the case with complete features.
Traditional classification tasks learn to assign samples to given classes based solely on sample features. This paradigm is evolving to include other sources of information, such as known relations between samples. Here we show that, even if additional relational information is not available in the data set, one can improve classification by constructing geometric graphs from the features themselves, and using them within a Graph Convolutional Network. The improvement in classification accuracy is maximized by graphs that capture sample similarity with relatively low edge density. We show that such feature-derived graphs increase the alignment of the data to the ground truth while improving class separation. We also demonstrate that the graphs can be made more efficient using spectral sparsification, which reduces the number of edges while still improving classification performance. We illustrate our findings using synthetic and real-world data sets from various scientific domains.
331 - Difan Zou , Ziniu Hu , Yewen Wang 2019
Graph convolutional networks (GCNs) have recently received wide attentions, due to their successful applications in different graph tasks and different domains. Training GCNs for a large graph, however, is still a challenge. Original full-batch GCN training requires calculating the representation of all the nodes in the graph per GCN layer, which brings in high computation and memory costs. To alleviate this issue, several sampling-based methods have been proposed to train GCNs on a subset of nodes. Among them, the node-wise neighbor-sampling method recursively samples a fixed number of neighbor nodes, and thus its computation cost suffers from exponential growing neighbor size; while the layer-wise importance-sampling method discards the neighbor-dependent constraints, and thus the nodes sampled across layer suffer from sparse connection problem. To deal with the above two problems, we propose a new effective sampling algorithm called LAyer-Dependent ImportancE Sampling (LADIES). Based on the sampled nodes in the upper layer, LADIES selects their neighborhood nodes, constructs a bipartite subgraph and computes the importance probability accordingly. Then, it samples a fixed number of nodes by the calculated probability, and recursively conducts such procedure per layer to construct the whole computation graph. We prove theoretically and experimentally, that our proposed sampling algorithm outperforms the previous sampling methods in terms of both time and memory costs. Furthermore, LADIES is shown to have better generalization accuracy than original full-batch GCN, due to its stochastic nature.
Learning representations for graphs plays a critical role in a wide spectrum of downstream applications. In this paper, we summarize the limitations of the prior works in three folds: representation space, modeling dynamics and modeling uncertainty. To bridge this gap, we propose to learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer stochastic node representations. Working with hyperbolic space, we present a novel Hyperbolic Variational Graph Neural Network, referred to as HVGNN. In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach. To model the uncertainty, we devise a hyperbolic graph variational autoencoder built upon the proposed TGNN to generate stochastic node representations of hyperbolic normal distributions. Furthermore, we introduce a reparameterisable sampling algorithm for the hyperbolic normal distribution to enable the gradient-based learning of HVGNN. Extensive experiments show that HVGNN outperforms state-of-the-art baselines on real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا