No Arabic abstract
We show that the pulsar mass depends on the environment, and that it decreases going towards the center of the Milky Way. This is due to two combined effects, the capture and accumulation of self-interacting, non-annihilating dark matter by pulsars, and the increase of the dark matter density going towards the galactic center. We show that mass decrease depends both on the density profile of dark matter, steeper profiles producing a faster and larger decrease of the pulsar mass, and on the strength of self-interaction. Once future observations will provide the pulsar mass in a dark matter rich environment, close to the galactic center, the present result will be able to put constraints on the characteristics of our Galaxy halo dark matter profile, on the nature of dark matter, namely on its annihilating or non-annihilating nature, on its strength of self-interaction, and on the particle mass.
Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test General Relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom are a characteristic feature of many extensions of General Relativity. For concreteness, we work in the context of metric $f(R)$ gravity, which is equivalent to General Relativity and a universally coupled scalar field with a non-linear potential whose form is fixed by the choice of $f(R)$. In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in General Relativity with those of a one-parameter model of $f(R)$ gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and post-merger dynamics. We comment on the utility of the full waveform (inspiral, merger, post-merger) to probe different regions of parameter space for both the particular model of $f(R)$ gravity studied here and for finite-range scalar forces more generally.
Observations of the properties of multiple coalescing neutron stars will simultaneously provide insight into neutron star mass and spin distribution, the neutron star merger rate, and the nuclear equation of state. Not all merging binaries containing neutron stars are expected to be identical. Plausible sources of diversity in these coalescing binaries can arise from a broad or multi-peaked NS mass distribution; the effect of different and extreme NS natal spins; the possibility of NS-BH mergers; or even the possibility of phase transitions, allowing for NS with similar mass but strongly divergent radius. In this work, we provide a concrete algorithm to combine all information obtained from GW measurements into a joint constraint on the NS merger rate, the distribution of NS properties, and the nuclear equation of state. Using a concrete example, we show how biased mass distribution inferences can significantly impact the recovered equation of state, even in the small-$N$ limit. With the same concrete example, we show how small-$N$ observations could identify a bimodal mass and spin distribution for merging NS simultaneously with the EOS. Our concordance approach can be immediately generalized to incorporate other observational constraints.
We study the effect of superfluidity on the tidal response of a neutron star in a general relativistic framework. In this work, we take a dual-layer approach where the superfluid matter is confined in the core of the star. Then, the superfluid core is encapsulated with an envelope of ordinary matter fluid which acts effectively as the low-density crustal region of the star. In the core, the matter content is described by a two-fluid model where only the neutrons are taken as superfluid and the other fluid consists of protons and electrons making it charge neutral. We calculate the values of various tidal love numbers of a neutron star and discuss how they are affected due to the presence of entrainment between the two fluids in the core. We also emphasize that more than one tidal parameter is necessary to probe superfluidity with the gravitational wave from the binary inspiral.
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
The first detections of black hole - neutron star mergers (GW200105 and GW200115) by the LIGO-Virgo-Kagra Collaboration mark a significant scientific breakthrough. The physical interpretation of pre- and post-merger signals requires careful cross-examination between observational and theoretical modelling results. Here we present the first set of black hole - neutron star simulations that were obtained with the numerical-relativity code BAM. Our initial data are constructed using the public LORENE spectral library which employs an excision of the black hole interior. BAM, in contrast, uses the moving-puncture gauge for the evolution. Therefore, we need to ``stuff the black hole interior with smooth initial data to evolve the binary system in time. This procedure introduces constraint violations such that the constraint damping properties of the evolution system are essential to increase the accuracy of the simulation and in particular to reduce spurious center-of-mass drifts. Within BAM we evolve the Z4c equations and we compare our gravitational-wave results with those of the SXS collaboration and results obtained with the SACRA code. While we find generally good agreement with the reference solutions and phase differences $lesssim 0.5$ rad at the moment of merger, the absence of a clean convergence order in our simulations does not allow for a proper error quantification. We finally present a set of different initial conditions to explore how the merger of black hole neutron star systems depends on the involved masses, spins, and equations of state.