No Arabic abstract
The past decade has witnessed great success of deep learning technology in many disciplines, especially in computer vision and image processing. However, deep learning-based video coding remains in its infancy. This paper reviews the representative works about using deep learning for image/video coding, which has been an actively developing research area since the year of 2015. We divide the related works into two categories: new coding schemes that are built primarily upon deep networks (deep schemes), and deep network-based coding tools (deep tools) that shall be used within traditional coding schemes or together with traditional coding tools. For deep schemes, pixel probability modeling and auto-encoder are the two approaches, that can be viewed as predictive coding scheme and transform coding scheme, respectively. For deep tools, there have been several proposed techniques using deep learning to perform intra-picture prediction, inter-picture prediction, cross-channel prediction, probability distribution prediction, transform, post- or in-loop filtering, down- and up-sampling, as well as encoding optimizations. In the hope of advocating the research of deep learning-based video coding, we present a case study of our developed prototype video codec, namely Deep Learning Video Coding (DLVC). DLVC features two deep tools that are both based on convolutional neural network (CNN), namely CNN-based in-loop filter (CNN-ILF) and CNN-based block adaptive resolution coding (CNN-BARC). Both tools help improve the compression efficiency by a significant margin. With the two deep tools as well as other non-deep coding tools, DLVC is able to achieve on average 39.6% and 33.0% bits saving than HEVC, under random-access and low-delay configurations, respectively. The source code of DLVC has been released for future researches.
Cross-component linear model (CCLM) prediction has been repeatedly proven to be effective in reducing the inter-channel redundancies in video compression. Essentially speaking, the linear model is identically trained by employing accessible luma and chroma reference samples at both encoder and decoder, elevating the level of operational complexity due to the least square regression or max-min based model parameter derivation. In this paper, we investigate the capability of the linear model in the context of sub-sampled based cross-component correlation mining, as a means of significantly releasing the operation burden and facilitating the hardware and software design for both encoder and decoder. In particular, the sub-sampling ratios and positions are elaborately designed by exploiting the spatial correlation and the inter-channel correlation. Extensive experiments verify that the proposed method is characterized by its simplicity in operation and robustness in terms of rate-distortion performance, leading to the adoption by Versatile Video Coding (VVC) standard and the third generation of Audio Video Coding Standard (AVS3).
Deep learning has demonstrated tremendous break through in the area of image/video processing. In this paper, a spatial-temporal residue network (STResNet) based in-loop filter is proposed to suppress visual artifacts such as blocking, ringing in video coding. Specifically, the spatial and temporal information is jointly exploited by taking both current block and co-located block in reference frame into consideration during the processing of in-loop filter. The architecture of STResNet only consists of four convolution layers which shows hospitality to memory and coding complexity. Moreover, to fully adapt the input content and improve the performance of the proposed in-loop filter, coding tree unit (CTU) level control flag is applied in the sense of rate-distortion optimization. Extensive experimental results show that our scheme provides up to 5.1% bit-rate reduction compared to the state-of-the-art video coding standard.
The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising research direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos. Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences. We firstly define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying open research challenges and by pointing out future research directions.
Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
In this paper, we study the server-side rate adaptation problem for streaming tile-based adaptive 360-degree videos to multiple users who are competing for transmission resources at the network bottleneck. Specifically, we develop a convolutional neural network (CNN)-based viewpoint prediction model to capture the nonlinear relationship between the future and historical viewpoints. A Laplace distribution model is utilized to characterize the probability distribution of the prediction error. Given the predicted viewpoint, we then map the viewport in the spherical space into its corresponding planar projection in the 2-D plane, and further derive the visibility probability of each tile based on the planar projection and the prediction error probability. According to the visibility probability, tiles are classified as viewport, marginal and invisible tiles. The server-side tile rate allocation problem for multiple users is then formulated as a non-linear discrete optimization problem to minimize the overall received video distortion of all users and the quality difference between the viewport and marginal tiles of each user, subject to the transmission capacity constraints and users specific viewport requirements. We develop a steepest descent algorithm to solve this non-linear discrete optimization problem, by initializing the feasible starting point in accordance with the optimal solution of its continuous relaxation. Extensive experimental results show that the proposed algorithm can achieve a near-optimal solution, and outperforms the existing rate adaptation schemes for tile-based adaptive 360-video streaming.