Do you want to publish a course? Click here

Kernel Machine and Distributed Lag Models for Assessing Windows of Susceptibility to Environmental Mixtures in Childrens Health Studies

95   0   0.0 ( 0 )
 Added by Ander Wilson
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy have focused on a single chemical exposure observed at high temporal resolution. Recent research has turned to focus on exposure to mixtures of multiple chemicals, generally observed at a single time point. We consider statistical methods for analyzing data on chemical mixtures that are observed at a high temporal resolution. As motivation, we analyze the association between exposure to four ambient air pollutants observed weekly throughout gestation and birth weight in a Boston-area prospective birth cohort. To explore patterns in the data, we first apply methods for analyzing data on (1) a single chemical observed at high temporal resolution, and (2) a mixture measured at a single point in time. We highlight the shortcomings of these approaches for temporally-resolved data on exposure to chemical mixtures. Second, we propose a novel method, a Bayesian kernel machine regression distributed lag model (BKMR-DLM), that simultaneously accounts for nonlinear associations and interactions among time-varying measures of exposure to mixtures. BKMR-DLM uses a functional weight for each exposure that parameterizes the window of susceptibility corresponding to that exposure within a kernel machine framework that captures non-linear and interaction effects of the multivariate exposure on the outcome. In a simulation study, we show that the proposed method can better estimate the exposure-response function and, in high signal settings, can identify critical windows in time during which exposure has an increased association with the outcome. Applying the proposed method to the Boston birth cohort data, we find evidence of a negative association between organic carbon and birth weight and that nitrate modifies the organic carbon, ...



rate research

Read More

The ability to identify time periods when individuals are most susceptible to exposures, as well as the biological mechanisms through which these exposures act, is of great public health interest. Growing evidence supports an association between prenatal exposure to air pollution and epigenetic marks, such as DNA methylation, but the timing and gene-specific effects of these epigenetic changes are not well understood. Here, we present the first study that aims to identify prenatal windows of susceptibility to air pollution exposures in cord blood DNA methylation. In particular, we propose a function-on-function regression model that leverages data from nearby DNA methylation probes to identify epigenetic regions that exhibit windows of susceptibility to ambient particulate matter less than 2.5 microns (PM$_{2.5}$). By incorporating the covariance structure among both the multivariate DNA methylation outcome and the time-varying exposure under study, this framework yields greater power to detect windows of susceptibility and greater control of false discoveries than methods that model probes independently. We compare our method to a distributed lag model approach that models DNA methylation in a probe-by-probe manner, both in simulation and by application to motivating data from the Project Viva birth cohort. In two epigenetic regions selected based on prior studies of air pollution effects on epigenome-wide methylation, we identify windows of susceptibility to PM$_{2.5}$ exposure near the beginning and middle of the third trimester of pregnancy.
Subjective wellness data can provide important information on the well-being of athletes and be used to maximize player performance and detect and prevent against injury. Wellness data, which are often ordinal and multivariate, include metrics relating to the physical, mental, and emotional status of the athlete. Training and recovery can have significant short- and long-term effects on athlete wellness, and these effects can vary across individual. We develop a joint multivariate latent factor model for ordinal response data to investigate the effects of training and recovery on athlete wellness. We use a latent factor distributed lag model to capture the cumulative effects of training and recovery through time. Current efforts using subjective wellness data have averaged over these metrics to create a univariate summary of wellness, however this approach can mask important information in the data. Our multivariate model leverages each ordinal variable and can be used to identify the relative importance of each in monitoring athlete wellness. The model is applied to athlete daily wellness, training, and recovery data collected across two Major League Soccer seasons.
276 - Duncan Lee , Gavin Shaddick 2012
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dynamic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can be modelled by an autoregressive process rather than a smooth function of calendar time; (ii) the effects of air pollution are allowed to evolve over time. The efficacy of these two extensions are investigated by applying a series of dynamic and non-dynamic models to air pollution and mortality data from Greater London. A Bayesian approach is taken throughout, and a Markov chain monte carlo simulation algorithm is presented for inference. An alternative likelihood based analysis is also presented, in order to allow a direct comparison with the only previous analysis of air pollution and health data using a DGLM.
One of the most significant barriers to medication treatment is patients non-adherence to a prescribed medication regimen. The extent of the impact of poor adherence on resulting health measures is often unknown, and typical analyses ignore the time-varying nature of adherence. This paper develops a modeling framework for longitudinally recorded health measures modeled as a function of time-varying medication adherence or other time-varying covariates. Our framework, which relies on normal Bayesian dynamic linear models (DLMs), accounts for time-varying covariates such as adherence and non-dynamic covariates such as baseline health characteristics. Given the inefficiencies using standard inferential procedures for DLMs associated with infrequent and irregularly recorded response data, we develop an approach that relies on factoring the posterior density into a product of two terms; a marginal posterior density for the non-dynamic parameters, and a multivariate normal posterior density of the dynamic parameters conditional on the non-dynamic ones. This factorization leads to a two-stage process for inference in which the non-dynamic parameters can be inferred separately from the time-varying parameters. We demonstrate the application of this model to the time-varying effect of anti-hypertensive medication on blood pressure levels from a cohort of patients diagnosed with hypertension. Our model results are compared to ones in which adherence is incorporated through non-dynamic summaries.
Built environment features (BEFs) refer to aspects of the human constructed environment, which may in turn support or restrict health related behaviors and thus impact health. In this paper we are interested in understanding whether the spatial distribution and quantity of fast food restaurants (FFRs) influence the risk of obesity in schoolchildren. To achieve this goal, we propose a two-stage Bayesian hierarchical modeling framework. In the first stage, examining the position of FFRs relative to that of some reference locations - in our case, schools - we model the distances of FFRs from these reference locations as realizations of Inhomogenous Poisson processes (IPP). With the goal of identifying representative spatial patterns of exposure to FFRs, we model the intensity functions of the IPPs using a Bayesian non-parametric viewpoint and specifying a Nested Dirichlet Process prior. The second stage model relates exposure patterns to obesity, offering two different approaches to accommodate uncertainty in the exposure patterns estimated in the first stage: in the first approach the odds of obesity at the school level is regressed on cluster indicators, each representing a major pattern of exposure to FFRs. In the second, we employ Bayesian Kernel Machine regression to relate the odds of obesity to the multivariate vector reporting the degree of similarity of a given school to all other schools. Our analysis on the influence of patterns of FFR occurrence on obesity among Californian schoolchildren has indicated that, in 2010, among schools that are consistently assigned to a cluster, there is a lower odds of obesity amongst 9th graders who attend schools with most distant FFR occurrences in a 1-mile radius as compared to others.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا