Do you want to publish a course? Click here

Optimal Task Assignment and Power Allocation for NOMA Mobile-Edge Computing Networks

253   0   0.0 ( 0 )
 Added by Fang Fang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Mobile edge computing (MEC) can enhance the computing capability of mobile devices, and non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two technologies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task completion time minimization in NOMA multiuser MEC networks, where multiple users can offload their tasks simultaneously via the same frequency band. We adopt the emph{partial} offloading, in which each user can partition its computation task into offloading computing and locally computing parts. We aim to minimize the maximum task latency among users by optimizing their tasks partition ratios and offloading transmit power. By considering the energy consumption and transmitted power limitation of each user, the formulated problem is quasi-convex. Thus, a bisection search (BSS) iterative algorithm is proposed to obtain the minimum task completion time. To reduce the complexity of the BSS algorithm and evaluate its optimality, we further derive the closed-form expressions of the optimal task partition ratio and offloading power for two-user NOMA MEC networks based on the analysed results. Simulation results demonstrate the convergence and optimality of the proposed a BSS algorithm and the effectiveness of the proposed optimal derivation.



rate research

Read More

Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution latency and device energy consumption, in this paper, we jointly optimize task offloading scheduling and transmit power allocation for MEC systems with multiple independent tasks. A low-complexity sub-optimal algorithm is proposed to minimize the weighted sum of the execution delay and device energy consumption based on alternating minimization. Specifically, given the transmit power allocation, the optimal task offloading scheduling, i.e., to determine the order of offloading, is obtained with the help of flow shop scheduling theory. Besides, the optimal transmit power allocation with a given task offloading scheduling decision will be determined using convex optimization techniques. Simulation results show that task offloading scheduling is more critical when the available radio and computational resources in MEC systems are relatively balanced. In addition, it is shown that the proposed algorithm achieves near-optimal execution delay along with a substantial device energy saving.
Secure communication is a promising technology for wireless networks because it ensures secure transmission of information. In this paper, we investigate the joint subcarrier (SC) assignment and power allocation problem for non-orthogonal multiple access (NOMA) amplify-and-forward two-way relay wireless networks, in the presence of eavesdroppers. By exploiting cooperative jamming (CJ) to enhance the security of the communication link, we aim to maximize the achievable secrecy energy efficiency by jointly designing the SC assignment, user pair scheduling and power allocation. Assuming the perfect knowledge of the channel state information (CSI) at the relay station, we propose a low-complexity subcarrier assignment scheme (SCAS-1), which is equivalent to many-to-many matching games, and then SCAS-2 is formulated as a secrecy energy efficiency maximization problem. The secure power allocation problem is modeled as a convex geometric programming problem, and then solved by interior point methods. Simulation results demonstrate that the effectiveness of the proposed SSPA algorithms under scenarios of using and not using CJ, respectively.
This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overhead of considered systems. A nonconvex optimization problem for maximizing the sum rate is formulated, which is proved to be NP-hard. The branch and bound (BB) approach is invoked to obtain the optimal power allocation policy, which is proved to converge to a global optimal solution. To elaborate further, low complexity suboptimal approach is developed for striking a good computational complexity-optimality tradeoff, where matching theory and successive convex approximation (SCA) techniques are invoked for tackling the user scheduling and power allocation problems, respectively. Simulation results reveal that: i) the proposed low complexity solution achieves a near-optimal performance; and ii) the proposed mmWave NOMA systems is capable of outperforming conventional mmWave orthogonal multiple access (OMA) systems in terms of sum rate and the number of served users.
88 - Xuming An , Rongfei Fan , Han Hu 2020
In this paper, we investigate a mobile edge computing (MEC) system with its computation task subjected to sequential task dependency, which is critical for video stream processing and intelligent MEC applications. To minimize energy consumption per mobile device while limiting task processing delay, task offloading strategy, communication resource, and computation resource are optimized jointly under both slow and fast fading channels. In slow fading channels, an optimization problem is formulated, which is mixed-integer and non-convex. To solve this challenging problem, we decompose it as a one-dimensional search of task offloading decision problem and a non-convex optimization problem with task offloading decision given. Through mathematical manipulations, the non-convex problem is transformed to be a convex one, which is shown to be solvable only with the simple Golden search method. In fast fading channels, optimal online policy depending on instant channel state is derived. In addition, it is proved that the derived policy will converge to be offline when channel coherence time is low, which can help to save extra computation complexity. Numerical results verify the correctness of our analysis and the effectiveness of our proposed strategies over existing methods.
In this work, we propose a globally optimal joint successive interference cancellation (SIC) ordering and power allocation (JSPA) algorithm for the sum-rate maximization problem in downlink multi-cell non-orthogonal multiple access (NOMA) systems. The proposed algorithm is based on the exploration of base stations (BSs) power consumption, and closed-form of optimal powers obtained for each cell. Although the optimal JSPA algorithm scales well with larger number of users, it is still exponential in the number of cells. For any suboptimal decoding order, we propose a low-complexity near-optimal joint rate and power allocation (JRPA) strategy in which the complete rate region of users is exploited. Furthermore, we design a near-optimal semi-centralized JSPA framework for a two-tier heterogeneous network such that it scales well with larger number of small-BSs and users. Numerical results show that JRPA highly outperforms the case that the users are enforced to achieve their channel capacity by imposing the well-known SIC necessary condition on power allocation. Moreover, the proposed semi-centralized JSPA framework significantly outperforms the fully distributed framework, where all the BSs operate in their maximum power budget. Therefore, the centralized JRPA and semi-centralized JSPA algorithms with near-to-optimal performance are good choices for larger number of cells and users.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا