Do you want to publish a course? Click here

Periodic Bandits and Wireless Network Selection

300   0   0.0 ( 0 )
 Added by Shunhao Oh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Bandit-style algorithms have been studied extensively in stochastic and adversarial settings. Such algorithms have been shown to be useful in multiplayer settings, e.g. to solve the wireless network selection problem, which can be formulated as an adversarial bandit problem. A leading bandit algorithm for the adversarial setting is EXP3. However, network behavior is often repetitive, where user density and network behavior follow regular patterns. Bandit algorithms, like EXP3, fail to provide good guarantees for periodic behaviors. A major reason is that these algorithms compete against fixed-action policies, which is ineffective in a periodic setting. In this paper, we define a periodic bandit setting, and periodic regret as a better performance measure for this type of setting. Instead of comparing an algorithms performance to fixed-action policies, we aim to be competitive with policies that play arms under some set of possible periodic patterns $F$ (for example, all possible periodic functions with periods $1,2,cdots,P$). We propose Periodic EXP4, a computationally efficient variant of the EXP4 algorithm for periodic settings. With $K$ arms, $T$ time steps, and where each periodic pattern in $F$ is of length at most $P$, we show that the periodic regret obtained by Periodic EXP4 is at most $Obig(sqrt{PKT log K + KT log |F|}big)$. We also prove a lower bound of $Omegabig(sqrt{PKT + KT frac{log |F|}{log K}} big)$ for the periodic setting, showing that this is optimal within log-factors. As an example, we focus on the wireless network selection problem. Through simulation, we show that Periodic EXP4 learns the periodic pattern over time, adapts to changes in a dynamic environment, and far outperforms EXP3.



rate research

Read More

In this paper, we are interested in improving the performance of constructive network coding schemes in lossy wireless environments.We propose I2NC - a cross-layer approach that combines inter-session and intra-session network coding and has two strengths. First, the error-correcting capabilities of intra-session network coding make our scheme resilient to loss. Second, redundancy allows intermediate nodes to operate without knowledge of the decoding buffers of their neighbors. Based only on the knowledge of the loss rates on the direct and overhearing links, intermediate nodes can make decisions for both intra-session (i.e., how much redundancy to add in each flow) and inter-session (i.e., what percentage of flows to code together) coding. Our approach is grounded on a network utility maximization (NUM) formulation of the problem. We propose two practical schemes, I2NC-state and I2NC-stateless, which mimic the structure of the NUM optimal solution. We also address the interaction of our approach with the transport layer. We demonstrate the benefits of our schemes through simulations.
Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.
Thanks to its capability of classifying complex phenomena without explicit modeling, deep learning (DL) has been demonstrated to be a key enabler of Wireless Signal Classification (WSC). Although DL can achieve a very high accuracy under certain conditions, recent research has unveiled that the wireless channel can disrupt the features learned by the DL model during training, thus drastically reducing the classification performance in real-world live settings. Since retraining classifiers is cumbersome after deployment, existing work has leveraged the usage of carefully-tailored Finite Impulse Response (FIR) filters that, when applied at the transmitters side, can restore the features that are lost because of the the channel actions, i.e., waveform synthesis. However, these approaches compute FIRs using offline optimization strategies, which limits their efficacy in highly-dynamic channel settings. In this paper, we improve the state of the art by proposing Chares, a Deep Reinforcement Learning (DRL)-based framework for channel-resilient adaptive waveform synthesis. Chares adapts to new and unseen channel conditions by optimally computing through DRL the FIRs in real-time. Chares is a DRL agent whose architecture is-based upon the Twin Delayed Deep Deterministic Policy Gradients (TD3), which requires minimal feedback from the receiver and explores a continuous action space. Chares has been extensively evaluated on two well-known datasets. We have also evaluated the real-time latency of Chares with an implementation on field-programmable gate array (FPGA). Results show that Chares increases the accuracy up to 4.1x when no waveform synthesis is performed, by 1.9x with respect to existing work, and can compute new actions within 41us.
138 - Song Yean Cho 2007
Multicast is a central challenge for emerging multi-hop wireless architectures such as wireless mesh networks, because of its substantial cost in terms of bandwidth. In this report, we study one specific case of multicast: broadcasting, sending data from one source to all nodes, in a multi-hop wireless network. The broadcast we focus on is based on network coding, a promising avenue for reducing cost; previous work of ours showed that the performance of network coding with simple heuristics is asymptotically optimal: each transmission is beneficial to nearly every receiver. This is for homogenous and large networks of the plan. But for small, sparse or for inhomogeneous networks, some additional heuristics are required. This report proposes such additional new heuristics (for selecting rates) for broadcasting with network coding. Our heuristics are intended to use only simple local topology information. We detail the logic of the heuristics, and with experimental results, we illustrate the behavior of the heuristics, and demonstrate their excellent performance.
Conventional wireless techniques are becoming inadequate for beyond fifth-generation (5G) networks due to latency and bandwidth considerations. To improve the error performance and throughput of wireless communication systems, we propose physical layer network coding (PNC) in an intelligent reflecting surface (IRS)-assisted environment. We consider an IRS-aided butterfly network, where we propose an algorithm for obtaining the optimal IRS phases. Also, analytic expressions for the bit error rate (BER) are derived. The numerical results demonstrate that the proposed scheme significantly improves the BER performance. For instance, the BER at the relay in the presence of a 32-element IRS is three orders of magnitudes less than that without an IRS.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا