Do you want to publish a course? Click here

Astro2020 Science White Paper: Compact Stellar Jets

204   0   0.0 ( 0 )
 Added by Thomas J. Maccarone
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper outlines the importance of understanding jets from compact binaries for the problem of understanding the broader phenomenology of jet production. Because X-ray binaries are nearby and bright, have well-measured system parameters, and vary by factors of $sim 10^6$ on $sim$ year timescales, they provide a unique opportunity to understand how various aspects of the jet physics change in response to changes in the accretion flow, giving the possibility of looking for trends within individual systems and testing their universality with other systems, rather than trying to interpret large samples of objects on a statistical basis.



rate research

Read More

Ultra-compact binaries (UCBs) are systems containing compact or degenerate stars with orbital periods less than one hour. Tens of millions of UCBs are predicted to exist within theGalaxy emitting gravitational waves (GWs) at mHz frequencies. Combining GW searches with electromagnetic (EM) surveys like Gaia and LSST will yield a comprehensive, multimessenger catalog of UCBs in the galaxy. Joint EM and GW observations enable measurements of masses, radii, and orbital dynamics far beyond what can be achieved by independent EM or GW studies. GW+EM surveys of UCBs in the galaxy will yield a trove of unique insights into the nature of white dwarfs, the formation of compact objects, dynamical interactions in binaries, and energetic, accretion-driven phenomena like Type Ia superonovae.
Direct determination of fundamental stellar parameters has many profound and wide-ranging impacts throughout astrophysics. These determinations are rooted in high angular resolution observations. In particular, as long-baseline optical interferometry has matured over the past decade, increasingly large survey samples are serving to empirically ground the basic parameters of these building blocks of the universe. True imaging and improved parametric fitting are becoming routinely available, an essential component of fully characterizing stars, stellar environments, and planets these stars may host.
Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the present time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
77 - Knut A.G. Olsen 2019
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in probing fundamental physics from general relativity to the structure of stars. Large surveys have been particularly important to the biggest of these discoveries. In the coming decade, current and planned surveys will push these research areas still further through a large variety of discovery spaces, giving us unprecedented views into the low surface brightness Universe, the high surface brightness Universe, the 3D motions of stars, the time domain, and the chemical abundances of stellar populations. These discovery spaces will be opened by a diverse range of facilities, including the continuing Gaia mission, imaging machines like LSST and WFIRST, massively multiplexed spectroscopic platforms like DESI, Subaru-PFS, and MSE, and telescopes with high sensitivity and spatial resolution like JWST, the ELTs, and LUVOIR. We do not know which of these facilities will prove most critical for resolved stellar populations research in the next decade. We can predict, however, that their chance of success will be maximized by granting use of the data to broad communities, that many scientific discoveries will draw on a combination of data from them, and that advances in computing will enable increasingly sophisticated analyses of the large and complex datasets that they will produce. We recommend that Astro2020 1) acknowledge the critical role that data archives will play for stellar populations and other science in the next decade, 2) recognize the opportunity that advances in computing will bring for survey data analysis, and 3) consider investments in Science Platform technology to bring these opportunities to fruition.
84 - Alexander P. Ji 2019
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved stars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا