Do you want to publish a course? Click here

Nonradiative to Superscattering Switch with Phase-Change Materials

277   0   0.0 ( 0 )
 Added by Aleksandr Krasnok
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phase-change materials (PCMs) can switch between different crystalline states as a function of an external bias, offering a pronounced change of their dielectric function. In order to take full advantage of these features for active photonics and information storage, stand-alone PCMs are not sufficient, since the phase transition requires strong pump fields. Here, we explore hybrid metal-semiconductor core-shell nanoantennas loaded with PCMs, enabling a drastic switch in scattering features as the load changes its phase. Large scattering, beyond the limits of small resonant particles, is achieved by spectrally matching different Mie resonances, while scattering cancellation and cloaking is achieved with out-of-phase electric dipole oscillations in the PCM shell and Ag core. We show that tuning the PCM crystallinity we can largely vary total (~15 times) and forward (~100 times) scattering. Remarkably, a substantial reconfiguration of the scattering pattern from Kerker (zero backward) to antiKerker (almost zero forward) regimes with little change (~5%) in crystallinity is predicted, which makes this structure promising low-intensity nonlinear photonics.



rate research

Read More

142 - Jie Luo , Xun Li , Xinyuan Zhang 2020
Inverse design of nanoparticles for desired scattering spectra and dynamic switching between the two opposite scattering anomalies, i.e. superscattering and invisibility, is important in realizing cloaking, sensing and functional devices. However, traditionally the design process is quite complicated, which involves complex structures with many choices of synthetic constituents and dispersions. Here, we demonstrate that a well-trained deep-learning neural network can handle these issues efficiently, which can not only forwardly predict scattering spectra of multilayer nanoparticles with high precision, but also inversely design the required structural and material parameters efficiently. Moreover, we show that the neural network is capable of finding out multi-wavelength invisibility-to-superscattering switching points at the desired wavelengths in multilayer nanoparticles composed of metals and phase-change materials. Our work provides a useful solution of deep learning for inverse design of nanoparticles with dynamic scattering spectra by using phase-change materials.
Despite recent advances in active metaoptics, wide dynamic range combined with high-speed reconfigurable solutions is still elusive. Phase-change materials (PCMs) offer a compelling platform for metasurface optical elements, owing to the large index contrast and fast yet stable phase transition properties. Here, we experimentally demonstrate an in situ electrically-driven reprogrammable metasurface by harnessing the unique properties of a phase-change chalcogenide alloy, Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST), in order to realize fast, non-volatile, reversible, multilevel, and pronounced optical modulation in the near-infrared spectral range. Co-optimized through a multiphysics analysis, we integrate an efficient heterostructure resistive microheater that indirectly heats and transforms the embedded GST film without compromising the optical performance of the metasurface even after several reversible phase transitions. A hybrid plasmonic-PCM meta-switch with a record electrical modulation of the reflectance over eleven-fold (an absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz is presented. Our work represents a significant step towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications.
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability that hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage a tunable all-dielectric reflective metasurface made of a newly emerged class of low-loss optical PCMs with superb characteristics, i.e., antimony trisulphide (Sb$_2$S$_3$), antimony triselenide (Sb$_2$Se$_3$), and binary germanium-doped selenide (GeSe$_3$), to realize switchable, high-saturation, high-efficiency and high-resolution structural colors. Having polarization sensitive building blocks, the presented metasurface can generate two different colors when illuminated by two orthogonally polarized incident beams. Such degrees of freedom (i.e., structural state and polarization) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors suitable for a wide range of applications, including tunable full-color printing and displays, information encryption, and anti-counterfeiting.
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation, and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability. This hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage tunable all-dielectric reflective metasurfaces made of newly emerged classes of low-loss optical PCMs, i.e., antimony trisulphide (Sb$_2$S$_3$) and antimony triselenide (Sb$_2$Se$_3$), with superb characteristics to realize switchable, high-saturation, high-efficiency and high-resolution dynamic meta-pixels. Exploiting polarization-sensitive building blocks, the presented meta-pixel can generate two different colors when illuminated by either one of two orthogonally polarized incident beams. Such degrees of freedom (i.e., material phase and polarization state) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors. We experimentally demonstrate, for the first time, an electrically-driven micro-scale display through the integration of phase-change metasurfaces with an on-chip heater formed by transparent conductive oxide. Our experimental findings enable a versatile platform suitable for a wide range of applications, including tunable full-color printing, enhanced dynamic displays, information encryption, and anti-counterfeiting.
Metasurfaces offer the potential to control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. Existing metasurfaces frequently utilize metallic polaritonic elements with high absorption losses, and/or fixed geometrical designs that serve a single function. Here we overcome these limitations by demonstrating a reconfigurable hyperbolic metasurface comprising of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) vanadium dioxide (VO2). Spatially localized metallic and dielectric domains in VO2 change the wavelength of the hyperbolic phonon polaritons (HPhPs) supported in hBN by a factor 1.6 at 1450cm-1. This induces in-plane launching, refraction and reflection of HPhPs in the hBN, proving reconfigurable control of in-plane HPhP propagation at the nanoscale15. These results exemplify a generalizable framework based on combining hyperbolic media and PCMs in order to design optical functionalities such as resonant cavities, beam steering, waveguiding and focusing with nanometric control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا