Do you want to publish a course? Click here

Reconfigurable Mid-Infrared Hyperbolic Metasurfaces using Phase-Change Materials

117   0   0.0 ( 0 )
 Added by Thomas Folland
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metasurfaces offer the potential to control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. Existing metasurfaces frequently utilize metallic polaritonic elements with high absorption losses, and/or fixed geometrical designs that serve a single function. Here we overcome these limitations by demonstrating a reconfigurable hyperbolic metasurface comprising of a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with the phase-change material (PCM) vanadium dioxide (VO2). Spatially localized metallic and dielectric domains in VO2 change the wavelength of the hyperbolic phonon polaritons (HPhPs) supported in hBN by a factor 1.6 at 1450cm-1. This induces in-plane launching, refraction and reflection of HPhPs in the hBN, proving reconfigurable control of in-plane HPhP propagation at the nanoscale15. These results exemplify a generalizable framework based on combining hyperbolic media and PCMs in order to design optical functionalities such as resonant cavities, beam steering, waveguiding and focusing with nanometric control.



rate research

Read More

The ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new approaches to the control of optical fields. In this article we present the design of novel switchable metasurfaces that enable the control of the nonclassical two-photon quantum interference. These structures require no static power consumption, operate at room temperature, and have high switching speed. For the first adaptive metasurface presented in this article, tunable nonclassical two-photon interference from -97.7% (anti-coalescence) to 75.48% (coalescence) is predicted. For the second adaptive geometry, the quantum interference switches from -59.42% (anti-coalescence) to 86.09% (coalescence) upon a thermally driven crystallographic phase transition. The development of compact and rapidly controllable quantum devices is opening up promising paths to brand-new quantum applications as well as the possibility of improving free space quantum logic gates, linear-optics bell experiments, and quantum phase estimation systems.
Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a unique structure. Such a periodic architecture exhibits two fundamental modes; pronounced counter-propagating short-range surface plasmon polariton (SR-SPP) coupled to the Ge2Sb2Te5 (GST) alloy as the feed gap, and the propagative surface plasmon polariton (PR-SPP) resonant modes tunneling to the GST nanostripes. By leveraging the multistate phase transition of alloy from amorphous to the crystalline, which induces significant complex permittivity change, the interplay between such enhanced modes can be drastically modified. Accordingly, in the intermediate phases, the proposed system experiences a coupled condition of operational over-coupling and under-coupling regimes leading to an inherently broadband response. We wisely addressing each gate-tunable meta-atom to achieve robust control over the reflection characteristics, wide phase agility up to 315? or considerable reflectance modulation up to 60%, which facilitate a myriad of on-demand optical functionalities in the telecommunication band. Based on the revealed underlying physics and electro-thermal effects in the GST alloy, a simple systematic approach for realization of an electro-optically tunable multifunctional metadevice governing anomalous reflection angle control (e.g., phased array antenna), near-perfect absorption (e.g., modulator), and polarization conversion (e.g., wave plate) is presented. As a promising alternative to their passive counterparts, such high-speed, non-volatile MSs offer an smart paradigm for reversible, energy-efficient, and programmable optoelectronic devices such as holograms, switches, and polarimeters.
We propose a nonvolatile, reconfigurable, and narrowband mid-infrared bandpass filter based on surface lattice resonance in phase-change material Ge2Sb2Te5 (GST). The proposed filter is composed of a two-dimensional gold nanorod array embedded in a thick GST film. Results show that when GST transits from the amorphous state to the crystalline state, the narrowband reflection spectrum of the proposed filter is tuned from 3.197 {mu}m to 4.795 {mu}m, covering the majority of the mid-infrared regime, the peak reflectance decreases from 72.6% to 25.8%, and the corresponding Q-factor decreases from 19.6 to 10.3. We show that the spectral tuning range can be adjusted by varying the incidence angle or the lattice period. By properly designing the gold nanorod sizes, we also show that the Q-factor can be greatly increased to 70 at the cost of relatively smaller peak reflection efficiencies, and that the peak reflection efficiency can be further increased to 80% at the cost of relatively smaller Q-factors. We expect this work will advance the engineering of GST-based nonvalatile tunable surface lattice resonances and will promote their applications especially in reconfigurable narrowband filters.
We experimentally demonstrate a very large dynamic optical reflection modulation from a simple unpatterned layered stack of phase-change materials ultrathin films. Specifically, we theoretically and experimentally demonstrate that properly designed deeply subwavelength GeSbTe (GST) films on a metallic mirror produce a dynamic modulation of light in the near-infrared from very strong reflection (R>80%) to perfect absorption (A > 99,97%) by simply switching the crystalline state of the phase-change material. While the amplitude of modulation can lead to an optical contrast up to 10^6, we can also actively write intermediate levels of reflection in between extreme values, corresponding to partial crystallization of the GST layer. We further explore several layered system designs and provide guidelines to tailor the wavelength efficiency range, the angle of operation and the degree of crystallization leading to perfect absorption.
All-dielectric metasurfaces consisting of arrays of nanostructured high-refractive-index materials, typically Si, are re-writing what is achievable in terms of the manipulation of light. Such devices support very strong magnetic, as well as electric, resonances, and are free of ohmic losses that severely limit the performance of their plasmonic counterparts. However, the functionality of dielectric-based metasurfaces is fixed-by-design, i.e. the optical response is fixed by the size, arrangement and index of the nanoresonators. A far wider range of applications could be addressed if active/reconfigurable control were possible. We demonstrate this here, via a new hybrid metasurface concept in which active control is achieved by embedding deeply sub-wavelength inclusions of a tuneable chalcogenide phase-change material within the body of high-index Si nanocylinders. Moreover, by strategic placement of the phase-change layer, and switching of its phase-state, we show selective and active control of metasuface resonances. This yields novel functionality, which we showcase via a dual- to mono-band meta-switch operating simultaneously in the O and C telecommunication bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا