Do you want to publish a course? Click here

Entrance Effects in Concentration-Gradient-Driven Flow Through an Ultrathin Porous Membrane

69   0   0.0 ( 0 )
 Added by David Huang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transport of liquid mixtures through porous membranes is central to processes such as desalination, chemical separations and energy harvesting, with ultrathin membranes made from novel 2D nanomaterials showing exceptional promise. Here we derive, for the first time, general equations for the solution and solute fluxes through a circular pore in an ultrathin planar membrane induced by a solute concentration gradient. We show that the equations accurately capture the fluid fluxes measured in finite-element numerical simulations for weak solute-membrane interactions. We also derive scaling laws for these fluxes as a function of the pore size and the strength and range of solute-membrane interactions. These scaling relationships differ markedly from those for concentration-gradient-driven flow through a long cylindrical pore or for flow induced by a pressure gradient or electric field through a pore in an ultrathin membrane. These results have broad implications for transport of liquid mixtures through membranes with a thickness on the order of the characteristic pore size.



rate research

Read More

In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The films tension is modulated by changing temperature continuously from well below the glass transition into the melt state of the film. The contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are measured and found to be consistent with the contact angles predicted by a force balance at the contact line.
We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer films, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.
Colloidal particles hold promise for mobilizing and removing trapped immiscible fluids from porous media, with implications for key energy and water applications. Most studies focus on accomplishing this goal using particles that can localize at the immiscible fluid interface. Therefore, researchers typically seek to optimize the surface activity of particles, as well as their ability to freely move through a pore space with minimal deposition onto the surrounding solid matrix. Here, we demonstrate that deposition can, surprisingly, promote mobilization of a trapped fluid from a porous medium without requiring any surface activity. Using confocal microscopy, we directly visualize both colloidal particles and trapped immiscible fluid within a transparent, three-dimensional (3D) porous medium. We find that as non-surface active particles deposit on the solid matrix, increasing amounts of trapped fluid become mobilized. We unravel the underlying physics by analyzing the extent of deposition, as well as the geometry of trapped fluid droplets, at the pore scale: deposition increases the viscous stresses on trapped droplets, overcoming the influence of capillarity that keeps them trapped. Given an initial distribution of trapped fluid, this analysis enables us to predict the extent of fluid mobilized through colloidal deposition. Taken together, our work reveals a new way by which colloids can be harnessed to mobilize trapped fluid from a porous medium.
Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pressure, they will ultimately buckle. This process can be strongly influenced by structural inhomogeneities in the capsule shells. We explore how the time delay before the onset of buckling decreases as the shells are made more inhomogeneous; this behavior can be quantitatively understood by coupling shell theory with Darcys law. In addition, we show that the shell inhomogeneity can dramatically change the folding pathway taken by a capsule after it buckles.
We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH- etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا