No Arabic abstract
We study the jamming phase diagram of sheared granular material using a novel Couette shear set-up with multi-ring bottom. The set-up uses small basal friction forces to apply a volume-conserving linear shear with no shear band to a granular system composed of frictional photoelastic discs. The set-up can generate arbitrarily large shear strain due to its circular geometry, and the shear direction can be reversed, allowing us to measure a feature that distinguishes shear-jammed from fragile states. We report systematic measurements of the stress, strain and contact network structure at phase boundaries that have been difficult to access by traditional experimental techniques, including the yield stress curve and the jamming curve close to $phi_{SJ}approx 0.74$, the smallest packing fraction supporting a shear-jammed state. We observe fragile states created under large shear strain over a range of $phi < phi_{SJ}$. We also find a transition in the character of the quasi-static steady flow centered around $phi_{SJ}$ on the yield curve as a function of packing fraction. Near $phi_{SJ}$, the average contact number, fabric anisotropy, and non-rattler fraction all show a change of slope. Above $phi_{F}approx 0.7$ the steady flow shows measurable deviations from the basal linear shear profile, and above $phi_capprox 0.78$ the flow is localized in a shear band.
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic cyclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
We present experiments on slow shear flow in a split-bottom linear shear cell, filled with layered granular materials. Shearing through two different materials separated by a flat material boundary is shown to give narrow shear zones, which refract at the material boundary in accordance with Snells law in optics. The shear zone is the one that minimizes the dissipation rate upon shearing, i.e.a manifestation of the principle of least dissipation. We have prepared the materials as to form a granular lens. Shearing through the lens is shown to give a very broad shear zone, which corresponds to fulfilling Snells law for a continuous range of paths through the cell.
Jammed systems all have a yield stress. Among these materials some have been shown to shear-band but it is as yet unclear why some materials develop shear-band and some others do not. In order to rationalize existing data concerning the flow characteristics of jammed systems and in particular understand the physical origin of such a difference we propose a simple approach for describing the steady flow behaviour of yield stress fluids, which retains only basic physical ingredients. Within this frame we show that in the liquid regime the behaviour of jammed systems turns from that of a simple yield stress fluid (exhibiting homogeneous flows) to a shear-banding material when the ratio of a characteristic relaxation time of the system to a restructuring time becomes smaller than 1, thus suggesting a possible physical origin of these trends.
The mechanical and transport properties of jammed materials originate from an underlying per- colating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where two particles are considered as linked if their interparticle force overcomes a threshold. We show that this transition belongs to the random percolation universality class, thus ruling out the existence of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming transition in the zero pressure limit, as the size of the critical region scales with the pressure.
Nonequilibrium steady states of vibrated inelastic frictionless spheres are investigated in quasi-two-dimensional confinement via molecular dynamics simulations. The phase diagram in the density-amplitude plane exhibits a fluidlike disordered and an ordered phase with threefold symmetry, as well as phase coexistence between the two. A dynamical mechanism exists that brings about metastable traveling clusters and at the same time stable clusters with anisotropic shapes at low vibration amplitude. Moreover, there is a square bilayer state which is connected to the fluid by BKTHNY-type two-step melting with an intermediate tetratic phase. The critical behavior of the two continuous transitions is studied in detail. For the fluid-tetratic transition, critical exponents of $tilde{gamma}=1.73$, $eta_4 approx 1/4$, and $z=2.05$ are obtained.