Do you want to publish a course? Click here

Turing conditions for pattern forming systems on evolving manifolds

162   0   0.0 ( 0 )
 Added by Robert Van Gorder
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of pattern-forming instabilities in reaction-diffusion systems on growing or otherwise time-dependent domains arises in a variety of settings, including applications in developmental biology, spatial ecology, and experimental chemistry. Analyzing such instabilities is complicated, as there is a strong dependence of any spatially homogeneous base states on time, and the resulting structure of the linearized perturbations used to determine the onset of instability is inherently non-autonomous. We obtain general conditions for the onset and structure of diffusion driven instabilities in reaction-diffusion systems on domains which evolve in time, in terms of the time-evolution of the Laplace-Beltrami spectrum for the domain and functions which specify the domain evolution. Our results give sufficient conditions for diffusive instabilities phrased in terms of differential inequalities which are both versatile and straightforward to implement, despite the generality of the studied problem. These conditions generalize a large number of results known in the literature, such as the algebraic inequalities commonly used as a sufficient criterion for the Turing instability on static domains, and approximate asymptotic results valid for specific types of growth, or specific domains. We demonstrate our general Turing conditions on a variety of domains with different evolution laws, and in particular show how insight can be gained even when the domain changes rapidly in time, or when the homogeneous state is oscillatory, such as in the case of Turing-Hopf instabilities. Extensions to higher-order spatial systems are also included as a way of demonstrating the generality of the approach.



rate research

Read More

We present an unifying description of a new class of localized states, appearing as large amplitude peaks nucleating over a pattern of lower amplitude. Localized states are pinned over a lattice spontaneously generated by the system itself. We show that the phenomenon is generic and requires only the coexistence of two spatially periodic states. At the onset of the spatial bifurcation, a forced amplitude equation is derived for the critical modes, which accounts for the appearance of localized peaks
In the nearly seven decades since the publication of Alan Turings work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developments were nascent in Turings paper, and others have been due to new insights from modern mathematical techniques, advances in numerical simulations, and extensive biological experiments. Despite such progress, there are still important gaps between theory and experiment, with many examples of biological patterning where the underlying mechanisms are still unclear. Here we review modern developments in the mathematical theory pioneered by Turing, showing how his approach has been generalized to a range of settings beyond the classical two-species reaction-diffusion framework, including evolving and complex manifolds, systems heterogeneous in space and time, and more general reaction-transport equations. While substantial progress has been made in understanding these more complicated models, there are many remaining challenges that we highlight throughout. We focus on the mathematical theory, and in particular linear stability analysis of `trivial base states. We emphasise important open questions in developing this theory further, and discuss obstacles in using these techniques to understand biological reality.
Pattern formation from homogeneity is well-studied, but less is known concerning symmetry-breaking instabilities in heterogeneous media. It is nontrivial to separate observed spatial patterning due to inherent spatial heterogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability which are loc
143 - G. Kozyreff , S.J. Chapman 2013
In pattern-forming systems, localized patterns are states of intermediate complexity between fully extended ordered patterns and completely irregular patterns. They are formed by stationary fronts enclosing an ordered pattern inside an homogeneous background. In two dimensions, the ordered pattern is most often hexagonal and the conditions for fronts to stabilize are still unknown. In this letter, we show how the locking of these fronts depends on their orientation relative to the pattern. The theory rests on general asymptotic arguments valid when the spatial scale of the front is slow compared to that of the hexagonal pattern. Our analytical results are confirmed by numerical simulations with the Swift-Hohenberg equation, relevant to hydrodynamical and buckling instabilities, and a nonlinear optical cavity model.
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarisation. We develop a modelling framework for bi-layer reaction-diffusion systems and relate it to a range of existing models. We derive conditions for diffusion-driven instability of a spatially homogeneous equilibrium analogous to the classical conditions for a Turing instability in the simplest nontrivial setting where one domain has a standard reaction-diffusion system, and the other permits only diffusion. Due to the transverse coupling between these two regions, standard techniques for computing eigenfunctions of the Laplacian cannot be applied, and so we propose an alternative method to compute the dispersion relation directly. We compare instability conditions with full numerical simulations to demonstrate impacts of the geometry and coupling parameters on patterning, and explore various experimentally-relevant asymptotic regimes. In the regime where the first domain is suitably thin, we recover a simple modulation of the standard Turing conditions, and find that often the broad impact of the diffusion-only domain is to reduce the ability of the system to form patterns. We also demonstrate complex impacts of this coupling on pattern formation. For instance, we exhibit non-monotonicity of pattern-forming instabilities with respect to geometric and coupling parameters, and highlight an instability from a nontrivial interaction between kinetics in one domain and diffusion in the other. These results are valuable for informing design choices in applications such as synthetic engineering of Turing patterns, but also for understanding the role of stratified media in modulating pattern-forming processes in developmental biology and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا