Do you want to publish a course? Click here

Quadratic $d$-numbers

62   0   0.0 ( 0 )
 Added by Andrew Schopieray
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Here we constructively classify quadratic $d$-numbers: algebraic integers in quadratic number fields generating Galois-invariant ideals. We prove the subset thereof maximal among their Galois conjugates in absolute value is discrete in $mathbb{R}$. Our classification provides a characterization of those real quadratic fields containing a unit of norm -1 which is known to be equivalent to the existence of solutions to the negative Pell equation. The notion of a weakly quadratic fusion category is introduced whose Frobenius-Perron dimension necessarily lies in this discrete set. Factorization, divisibility, and boundedness results are proven for quadratic $d$-numbers allowing a systematic study of weakly quadratic fusion categories which constitute essentially all known examples of fusion categories having no known connection to classical representation theory.



rate research

Read More

The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we define a family of homomorphisms $Phi_{u,v}: E(mathbb{Q}) rightarrow mathrm{CL}(-D)$ for particular negative fundamental discriminants $-D:=-D_E(u,v)$, which we use to simultaneously address questions related to lower bounds for class numbers, the structures of class groups, and ranks of quadratic twists. Specifically, given an elliptic curve $E$ of rank $r$, let $Psi_E$ be the set of suitable fundamental discriminants $-D<0$ satisfying the following three conditions: the quadratic twist $E_{-D}$ has rank at least 1; $E_{text{tor}}(mathbb{Q})$ is a subgroup of $mathrm{CL}(-D)$; and $h(-D)$ satisfies an effective lower bound which grows asymptotically like $c(E) log (D)^{frac{r}{2}}$ as $D to infty$. Then for any $varepsilon > 0$, we show that as $X to infty$, we have $$#, left{-X < -D < 0: -D in Psi_E right } , gg_{varepsilon} X^{frac{1}{2}-varepsilon}.$$ In particular, if $ell in {3,5,7}$ and $ell mid |E_{mathrm{tor}}(mathbb{Q})|$, then the number of such discriminants $-D$ for which $ell mid h(-D)$ is $gg_{varepsilon} X^{frac{1}{2}-varepsilon}.$ Moreover, assuming the Parity Conjecture, our results hold with the additional condition that the quadratic twist $E_{-D}$ has rank at least 2.
We develop further the theory of $q$-deformations of real numbers introduced by Morier-Genoud and Ovsienko, and focus in particular on the class of real quadratic irrationals. Our key tool is a $q$-deformation of the modular group $PSL_q(2,mathbb{Z})$. The action of the modular group by Mobius transformations commutes with the $q$-deformations. We prove that the traces of the elements of $PSL_q(2,mathbb{Z})$ are palindromic polynomials with positive coefficients. These traces appear in the explicit expressions of the $q$-deformed quadratic irrationals.
We give an explicit construct of a harmonic weak Maass form $F_{Theta}$ that is a lift of $Theta^3$, where $Theta$ is the classical Jacobi theta function. Just as the Fourier coefficients of $Theta^3$ are related to class numbers of imaginary quadratic fields, the Fourier coefficients of the holomorphic part of $F_{Theta}$ are associated to class numbers of real quadratic fields.
163 - Yong Zhang 2021
The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery numbers or Franel numbers conjectured by Z.-W. Sun. Let $pgeq 5$ be a prime and let $nin mathbb{Z}^{+}$. We show that begin{align} otag frac{1}{n}bigg(sum_{k=0}^{pn-1}(2k+1)A_k-psum_{k=0}^{n-1}(2k+1)A_kbigg)equiv0pmod{p^{4+3 u_p(n)}} end{align} and begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(2k+1)^3A_k-p^3sum_{k=0}^{n-1}(2k+1)^3A_kbigg)equiv0pmod{p^{6+3 u_p(n)}}, end{align} where $ u_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(3k+2)(-1)^kf_k-p^2sum_{k=0}^{n-1}(3k+2)(-1)^kf_kbigg)equiv0pmod{p^{3}}. end{align}
Generalizing the concept of a perfect number is a Zumkeller or integer perfect number that was introduced by Zumkeller in 2003. The positive integer $n$ is a Zumkeller number if its divisors can be partitioned into two sets with the same sum, which will be $sigma(n)/2$. Generalizing even further, we call $n$ a $k$-layered number if its divisors can be partitioned into $k$ sets with equal sum. In this paper, we completely characterize Zumkeller numbers with two distinct prime factors and give some bounds for prime factorization in case of Zumkeller numbers with more than two distinct prime factors. We also characterize $k$-layered numbers with two distinct prime factors and even $k$-layered numbers with more than two distinct odd prime factors. Some other results concerning these numbers and their relationship with practical numbers and Harmonic mean numbers are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا