Do you want to publish a course? Click here

Disentangling nature from nurture: tracing the origin of seed black holes

124   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin and properties of black hole seeds that grow to produce the detected population of supermassive black holes are unconstrained at present. Despite the existence of several potentially feasible channels for the production of initial seeds in the high redshift universe, since even actively growing seeds are not directly observable at these epochs, discriminating between models remains challenging. Several new observables that encapsulate information about seeding have been proposed in recent years, and these offer exciting prospects for truly unraveling the nature of black hole seeds in the coming years. One of the key challenges for this task lies in the complexity of the problem, the required disentangling of the confounding effects of accretion physics and mergers, as mergers and accretion events over cosmic time stand to erase these initial conditions. Nevertheless, some unique signatures of seeding do survive and still exist in: local scaling relations between black holes and their galaxy hosts at low-masses; in high-redshift luminosity functions of accreting black holes; and in the total number and mass functions of gravitational wave coalescence events from merging binary black holes. One of the clearest discriminants for seed models are these high redshift gravitational wave detections of mergers from space detectable in the milliHertz range. These predicted event rates offer the most direct constraints on the properties of initial black hole seeds. Improving our theoretical understanding of black hole dynamics and accretion will also be pivotal in constraining seeding models in combination with the wide range of multi-messenger data.



rate research

Read More

Solar-mass black holes with masses in the range of $sim 1-2.5 M_{odot}$ are not expected from conventional stellar evolution, but can be produced naturally via neutron star (NS) implosions induced by capture of small primordial black holes (PBHs) or from accumulation of some varieties of particle dark matter. We argue that a unique signature of such transmuted solar-mass BHs is that their mass distribution would follow that of the NSs. This would be distinct from the mass function of black holes in the solar-mass range predicted either by conventional stellar evolution or early Universe PBH production. We propose that analysis of the solar-mass BH population mass distribution in a narrow mass window of $sim 1-2.5,{rm M}_odot$ can provide a simple yet powerful test of the origin of these BHs. Recent LIGO/VIRGO gravitational wave (GW) observations of the binary merger events GW190425 and GW190814 are consistent with a BH mass in the range $sim 1.5-2.6~M_{odot}$. Though these results have fueled speculation on dark matter-transmuted solar-mass BHs, we demonstrate that it is unlikely that the origin of these particular events stems from NS implosions. Data from upcoming GW observations will be able to distinguish between solar-mass BHs and NSs with high confidence. This capability will facilitate and enhance the efficacy of our proposed test.
47 - Ryan Magee , Chad Hanna 2017
The nature of dark matter remains one of the biggest open questions in physics. Intriguingly, it has been suggested that dark matter may be explained by another recently observed phenomenon: the detection of gravitational waves by LIGO. LIGOs detection of gravitational waves from merging stellar mass black holes renewed attention toward the possibility that dark matter consists solely of black holes created in the very early universe and that these primordial black holes are what LIGO is presently observing. Subsequent work on this topic has ruled out the possibility that dark matter could consist solely of black holes similar to those that LIGO has detected with masses above 10 solar masses. However, LIGOs connection to dark matter remains an open question and in this work we consider a distribution of primordial black holes that accounts for all of the dark matter, is consistent with LIGOs observations arising from primordial black hole binaries, and resolves tension in previous surveys of microlensing events in the Milky Way halo. The primordial black hole mass distribution that we consider offers an important prediction--LIGO may detect black holes smaller than have ever been observed with ~1% of the black holes it detects having a mass less than the mass of our Sun. Approximately one year of operating advanced LIGO at design sensitivity should be adequate to begin to see a hint of a primordial black hole mass distribution. Detecting primordial black hole binaries below a solar mass will be readily distinguishable from other known compact binary systems, thereby providing an unambiguous observational window for advanced LIGO to pin down the nature of dark matter.
We study the X-ray variability properties of distant AGNs in the Chandra Deep Field-South region over 17 years, up to $zsim 4$, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is an ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal timescales, are most consistent with a Power Spectral Density (PSD) described by a broken (or bending) power-law, similar to nearby AGNs. We confirm the presence of an anti-correlation between luminosity and variability, resulting from the dependence of variability on BH mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio $lambda_{Edd}$ affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average $lambda_{Edd}$ as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of $lambda_{Edd}$ with lookback time up to $zsim 2-3$. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (10^4 - 10^5 solar mass) objects. Our calculations demonstrate that the interplay between stellar dynamics, gas accretion and protostellar evolution is particularly relevant. Gas accretion onto the protostars enhances their radii, resulting in an enhanced collisional cross section. We show that the fraction of collisions can increase from 0.1-1% of the initial population to about 10% when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronised atomic-cooling halo pairs and/or dynamically-heated mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find $approx1400$ dynamically heated metal-free mini-haloes, including one of these which evolves to a synchronised pair and ends up in the massive quasar-host halo by $z=6$. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar hosts progenitors, potentially merging at lower redshifts and yielding gravitational wave events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا